당신은 주제를 찾고 있습니까 “분모 분자 영어로 – [야나두 숫자영어] 영어로 \”분수\” 읽기l 야나두 l 원예나 l 영어회화 l“? 다음 카테고리의 웹사이트 ppa.charoenmotorcycles.com 에서 귀하의 모든 질문에 답변해 드립니다: https://ppa.charoenmotorcycles.com/blog. 바로 아래에서 답을 찾을 수 있습니다. 작성자 야나두 공식 채널 Yanadoo Official 이(가) 작성한 기사에는 조회수 106,328회 및 좋아요 755개 개의 좋아요가 있습니다.
우선 분수! 분수는 전체에 대한 부분을 나타내는 수를 말합니다. 전체를 나타내는 분모( #denominator )와 부분을 나타내는 분자( #numerator )로 구성됩니다.
분모 분자 영어로 주제에 대한 동영상 보기
여기에서 이 주제에 대한 비디오를 시청하십시오. 주의 깊게 살펴보고 읽고 있는 내용에 대한 피드백을 제공하세요!
d여기에서 [야나두 숫자영어] 영어로 \”분수\” 읽기l 야나두 l 원예나 l 영어회화 l – 분모 분자 영어로 주제에 대한 세부정보를 참조하세요
★ 야나두 하루 10분 영어
바쁜 일상 속, 집중하기 좋은 시간 10분!
10분에 핵심만 담아낸 쉽고 재미있는 영어회화 강의 야나두!
야나두 자세히 보기
▶ Pc: http://bit.ly/utube_yanadoo
▶ Mobile: http://bit.ly/youtube_yanadoo
– 문법을 기반으로한 어법활용 말하기 강의
– 영어 초보에게 최적화된 짧고 굵은 10분 강의
– 수준별 맞춤 커리큘럼 제공
– 100% 현금 환급을 통한 동기부여
★ 야나두 숫자영어
야나두 숫자영어 강의는
일상 속 흔히 말하게 되는 날짜, 키, 몸무게, 가격, 길이 등 영어로 숫자를 말하는 방법을 알려드립니다.
쉬운 것 같지만 영어로 말하기는 힘들었던 숫자 영어, 야나두와 함께라면 어렵지 않습니다!
페이스북 바로가기: https://www.facebook.com/yanadoo1/
밴드 바로가기: https://www.band.us/@yanadoo
#야나두 #원예나 #영어회화
분모 분자 영어로 주제에 대한 자세한 내용은 여기를 참조하세요.
‘분수’에 관한 영어 표현(분모, 분자, 가분수) – IKAN – 티스토리
‘분수’는 영어로 ‘fraction’이라고 한다. ; 1.’분모’는 영어로 ‘denominator’이다. ; 여기서 ‘무엇이 4개냐?’라는 질문에서 ‘무엇’에 해당하는 것이 바로 ‘1 …
Source: speckofdust.tistory.com
Date Published: 4/11/2021
View: 362
분수 영어로 읽기 – 네이버 블로그
분수 영어로 읽기 · 1. half 의 복수 = halves (L 발음은 묵음) · 2. 분자 = numerator · 3. 분모 = denominator · 4. 진분수 = proper fraction · 5. 가분수 = …
Source: m.blog.naver.com
Date Published: 4/29/2022
View: 8987
분수 영어로 읽기, 소숫점 읽기 – zzubinibu
분모는 영어로 “numerator”, 분자는 “denominator” 라고 하며, 분수를 영어로 표현하면 Fractional Number 또는 Fraction 이라고 한다.
Source: zzubinibu.tistory.com
Date Published: 8/3/2021
View: 7159
분수 (수학) – 위키백과, 우리 모두의 백과사전
분수(分數, 영어: fraction)는 수학에서 부분이 전체를 차지하는 비율을 나타내는 수식이다. … 분자와 분모가 정수인 분수로 나타낼 수 있는 수를 유리수라고 한다.
Source: ko.wikipedia.org
Date Published: 4/10/2022
View: 245
[영어] 영어로 분수 읽기 (세 가지 방법) – 디네
분수를 영어로 읽는 방법 영어로 분수를 읽는 방법에는 3가지 방법이 있습니다. ※ 영어권에서는 분수를 기본적으로 분자 -> 분모 순서로 읽습니다. 1.
Source: dinae.tistory.com
Date Published: 11/30/2022
View: 1720
분자 분모 영어로
사전 항목과 같은 분자 분모 영어로 ; 분자 · Molecular ; 분자 · Molecule ; 분자 · Numerator ; 최소 공통 분모 · Lowest Common Denominator ; 최소 공통 분모 · Least …
Source: ko.langs.education
Date Published: 11/2/2022
View: 9346
분수, 분모, 분자 – 제타위키
분수 문서를 참고하십시오. 분모와 분자로 구성됨; 전체에 대한 부분을 나타내는 수; 어떤 수 a(분자)를 다른 수(분모)로 …
Source: zetawiki.com
Date Published: 4/25/2021
View: 849
영어로 분수(1/4, 7/9, 1 3/5) 읽는 법 – bskyvision
오늘은 분수를 영어로 어떻게 읽는지에 대해 정리해보도록 하겠습니다. 일단 기본적으로 영어로 분수를 읽을 때는 분자는 기수로, 분모는 서수로 읽 …
Source: bskyvision.com
Date Published: 6/14/2022
View: 3840
주제와 관련된 이미지 분모 분자 영어로
주제와 관련된 더 많은 사진을 참조하십시오 [야나두 숫자영어] 영어로 \”분수\” 읽기l 야나두 l 원예나 l 영어회화 l. 댓글에서 더 많은 관련 이미지를 보거나 필요한 경우 더 많은 관련 기사를 볼 수 있습니다.
주제에 대한 기사 평가 분모 분자 영어로
- Author: 야나두 공식 채널 Yanadoo Official
- Views: 조회수 106,328회
- Likes: 좋아요 755개
- Date Published: 2015. 8. 13.
- Video Url link: https://www.youtube.com/watch?v=rEH9KZmZq7Y
분수, 소수를 영어로 읽기
#분수를영어로
#소수를영어로
오늘은 분수( #fraction )와 소수( #decimal )을 영어로 어떻게 읽는지 알아볼게요.
우선 분수!
분수는 전체에 대한 부분을 나타내는 수를 말합니다. 전체를 나타내는 분모( #denominator )와 부분을 나타내는 분자( #numerator )로 구성됩니다.
분수의 종류에는
분자가 1인 단위분수( #unit_fraction ),
분자가 분모보다 작은 진분수( #proper_fraction ),
분자가 분모와 같거나 분모보다 큰 가분수( #improper fraction )
가분수를 정수와 진분수의 합으로 나타낸 대분수( #mixed_number ),
분수의 분자·분모 중 적어도 하나가 분수인 복잡한 분수인 번분수( #complex_fraction ),
분모와 분자가 1이외의 공통된 인수를 갖지 않는 기약분수( #irreducible_fraction ) 등이 있습니다.
분수 a/b(a, b는 자연수)의 분모 b, 분자 a가 서로 소(素)일 때, 즉 분모 b와 분자 a가 1 이외에는 공통인수를 가지지 않을 때 우리는 그 분수를 기약분수라고 부릅니다.
우선 단위분수부터 읽는 법을 배웁시다.
1/2 -> a(one) second 또는 a half
1/3 -> a(one) third
1/4 -> a(one) fourth 또는 a quarter
1/5 -> a(one) fifth
분자는 기수(셀 때 쓰는 수. one. two. three . . . )
분모는 서수(순서를 정할 때 쓰는 수, 첫번째, 두번째, 세번째…first, second, third, fourth. . .)로 읽어주는 게 기본입니다.
다음은 분자가 2이상일 때의 분수
2/3 -> two thirds
앞과 같은 요령인데…분자가 1보다 큰 복수니까 끝에 ~s를 붙여줍니다.
3/4은 그렇다면? 네. three fourths 또는 three quarters
4/5는 four fifths 쉽죠?
다음은 대분수 읽는 방법
2와2/3 -> two and two thirds
앞의 수를 읽고 and 를 붙인 다음 분수를 읽어주면 됩니다.
3과 4/7 는 three and four sevenths
그러면 234/718 은 어떻게 읽을까요?
two hundred thirty four seven hundred eighteenths 가 되겠죠?
복잡하니까 일상에서는 two hundred thirty four over seven hundred eighteen이라고 합니다.
718 위에 234 가 있다고 읽는 거죠. ^^* 쉽죠?
이제는 소수(1보다 작은 수. 小數)를 읽는 법을 보도록 하죠.
소수는 간단합니다.
그 전에 한국학생은 소에 강세를 두어 읽는 소수(素數, prime number)와 소수(decimal)을 구별하실 줄 아셔야 합니다.
0.23 -> zero point two three
2.35 -> two point three five
소수는 소수점(decimal point)을 point로 읽고 앞 숫자는 숫자대로 읽고 소수점 뒤 숫자는 하나씩 읽어줍니다. ^^*
오늘은 여기까지… ^^/
다음에 또 봐요. 빠이~~
‘분수’에 관한 영어 표현(분모, 분자, 가분수)
반응형
‘분수’에 관한 영어 표현(분모, 분자, 가분수)
오래전에 ‘소수’를 영어로 어떻게 표현하는지에 대해 다룬 적이 있다.
(글 하단 링크 참조)
이번에는 분수에 대해, 그리고 분수에 관한 매우 기초적인 표현 몇 개를 우선 다뤄본다.
‘소수’가 영어로 decimal이었다면,
‘ 분수 ‘는 영어로 ‘ fraction ‘이라고 한다.
‘fraction’이라는 단어는 일차적인 의미가 ‘부분, 일부’라는 뜻으로 ‘part’와 유사한 뜻으로도 쓰이는데,
거기서 뜻이 조금 더 파생돼서 ‘분”수’, 즉 ‘전체에 대한 부분 을 나타내는 수’ 개념으로 마찬가지로 fraction이라는 표현이 쓰인다고 보면 되겠다.
출처: https://www.blendspace.com/lessons/tvbxHoD9ev20MA/fractions
우선, 분수와 관련된 기본적인 용어 3가지다.
‘분모’, ‘분자’, 그리고 ‘가분수’에 대해 다뤄본다.
1.’분모’는 영어로 ‘denominator’이다.
뭔가 수학 용어 느낌이랑은 거리가 멀어 보이는 희한한 단어다. 무슨 뜻일까.
사전을 찾아보면 ‘denominate’이라는 단어의 의미 중 ‘명명하다’라는 의미가 있다.
‘이름’과 관련이 있다는 것 같은데, 아래의 원어민 설명을 보자.
“Denominator names the “things” we are counting”
위 설명이 직관적으로 이해가 안 간다면,
denominator=”우리가 (분수를) 셀 때(읽을 때) 기준이 되는 이름(단위)” 개념이라고 이해하면 된다.
다음 글에서 더 자세히 다루겠지만,
위의 예시 ‘4/7’의 경우, 영어로는 보통 ‘four sevenths’라고 읽는다.
이는 ‘1/7(=seventh)이 4개(=four)’가 있다는 뜻이다.
(**’seventh’는 ‘7번째’이지, 웬 ‘1/7’이냐 싶을 수 있는데, third, fourth, fifth 등등.. 이와 같은 ‘서수’들이 모두
1/3, 1/4, 1/5 등의 표현으로도 쓰인다. 이와 관련해서는 다음 글에서 다룰 예정이다.)
여기서 ‘ 무엇 이 4개냐?’라는 질문에서 ‘무엇’에 해당하는 것이 바로 ‘1/7’,
즉 ‘four sevenths’에서 ‘seventh’ 부분이며,
이와 같이 우리가 영어로 분수를 읽을 때 기준이 되는 단위(단위명)를 ‘denominator’라 하며,
이게 우리 말로는 ‘분모’라고 하는 것이다.
2.’분자’는 영어로 ‘numerator’이다.
numerator라는 단어는 라틴어 ‘numerus’, 더 친숙하게는 영어 단어 ‘number’와 연관이 있는 단어로,
여기서는 ‘how many’를 나타낸다고 보면 되겠다.
위에서 분모를 설명하는 과정에서 간략히 설명했으니 이번엔 쉽게 이해가 갈 것이다.
같은 예시로, ‘4/7’이라는 분수를 영어로는 ‘four sevenths’라고 표현한다고 했다.
1/7이 4개 있다는 뜻이라고도 했다.
여기서 이번에는 ‘1/7이 몇 개 냐?’라는 질문에서 ‘몇 개’에 해당하는 것이 바로 ‘4’,
즉 ‘four sevenths’에서 ‘four’ 부분이며,
우리가 영어로 분수를 읽을 때, ‘denominator'(분모)가 몇 개가 모인 것인지를 나타내는 것을 ‘numerator’라고 하며,
이게 우리 말로는 ‘분자’라고 하는 것이다.
분수는 우리가 수학 시간에 이미 배웠고, 일상생활에서도 아무런 문제 없이 잘 써왔기 때문에 분모나 분자나 그냥 별다른 설명을 안 해도 머릿속에 완벽하게 이해를 하고 있었을 것이다.
그런데 이게 막상 각각의 영어 표현을 보면 암기야 가능하겠지만 이해가 바로 안 갈 수 있었을 텐데, 이 참에 한 번 이해를 하고 오랫동안 기억을 할 수 있으면 좋겠다.
3.’가분수’는 영어로 ‘improper fraction’이다.
수학 관련 글이 아니라 영어 관련 글이니
가분수에 대한 설명은 자세히 안 해도 될 것이라고 본다. 위의 예시들이 가분수다.
‘가’라는 말 때문인지, 영어 표현을 모르는 경우 ‘ false fraction ‘과 같은 표현들을 간혹 하는데,
영어로는 ‘improper fraction’이 맞는 표현이다.
이런 경우, 우리말과 너무 연관을 짓지 말고, 그냥 영어는 이렇게 조금 다르게 쓰는구나,라고 받아들이고
암기를 하는 게 가장 현명할 것 같다.
어쨌든, 일반적인 분수(진분수)와는 달리 그 형태가 일반적이지 않기 때문에(분자가 분모보다 크기 때문. 혹은 같거나)
‘제대로 되지 않은’ 분수라고 해서 ‘improper fraction’이라고 한다고 생각하면 되겠다.
참고로,
역으로 ‘진분수’, 즉 우리가 일상적으로 보는 분수들(1/2, 1/3, 2/5 등등..)이 영어로 ‘proper fraction’이라는 것을
유추할 수도 있겠다. 일반적으로 fraction라고 하면 대부분 proper fraction이기 때문에, 자주 쓰이진 않지만 말이다.
**우리말과는 달리, 영어로는 분수를 읽는 방법이 꽤 여러 개가 있다.
다음 글에서는 실제 분수를 영어로 어떻게 읽는지에 대해 다뤄본다.
*이전 글 링크 – ‘소수’ 영어로 – ‘decimal’
https://speckofdust.tistory.com/18
반응형
분수 영어로 읽기
마유 영어상식 #15: 영어로 숫자읽기 PART III
드디어 영어로 숫자읽기 시리즈의 종결판,
그 세번째 포스팅을 합니다.
예고했듯이, 영어로 분수읽기에 관해 써봅니다.
분수는 영어로 fraction 이라고 합니다.
미국에서 처음으로 수학수업을 들었을 때
그 고통은 말로 표현하기 힘드네요.
수학공식이던 뭐던 물론 한국에 비하면 거의 유치원수준이지만,
분수가 영어로 뭔지, 분모가 영어로 뭔지, 직각이 영어로 뭔지,
뭘 알아야 풀지, 그쵸?
영어로 분수읽기:
Rule #1: 분자는 기수 (one, two, three)
분모는 서수 (third, fifth) 로
분자 -> 분모 순서로 읽습니다.
또한, 분모도 일반 가산명사처럼 단수/복수의 개념을 지켜야 합니다.
(복수에 s를 넣어야 한다는 말임)
분자가 1일 경우 분모가 third, fifth 등이지만,
분자가 2이상 일 경우 분모는 thirds, fifths 등 이라는 말입니다.
왜냐하면, 2/3 은 1/3 이 두 개 있다는 말이기 때문에 복수인 거죠.
그러므로, one third x 2 = two thirds (third 뒤에 s 로 복수임을 강조)
예를 몇개 들면,
1/3 = one third (a third)
2/3 = two thirds
3/4 = three fourths
1/5 = one fifth (a fifth)
3/5 = three fifths
4/5 = four fifths
1/10 = one tenth 혹은 a tenth
9/10 = nine tenths
Rule #2: 특별한 이름을 가진 분수들이 있습니다.
1. 1/2 – one half 혹은 a half
2. 1/4 – one quarter 혹은 a quarter
물론 1/4 의 경우는 one fourth 라고 읽을 수도 있습니다.
Rule #3: 대분수의 경우 정수 -> 분수 의 순서로 읽습니다.
예를 들어,
3 과 1/2 = three and a half
5 와 3/4 = five and three fourths
Rule #4: “분자 over 분모” 로 읽는 것도 가능합니다.
이런 경우는 보통,
1. 분자가 10 을 넘길 정도로 커지는 분수에 자주 사용
2. 분자가 10 아래여도 수학용어로 자주 사용
예를 들어,
1/3 = one over three
4/7 = four over seven
13/24 = thirteen over twenty four
24/100 = twenty four over a hundred
마지막으로 참조어휘들:
1. half 의 복수 = halves (L 발음은 묵음)
2. 분자 = numerator
3. 분모 = denominator
4. 진분수 = proper fraction
5. 가분수 = improper fraction
6. 대분수 = mixed number
출처: http://cafe.naver.com/superenglishcafe/26325
분수 영어로 읽기, 소숫점 읽기
분수 영어로 읽기, 소숫점 읽기
영어로 분수를 읽기 할 때는 두 가지 수의 개념을 이해해야 한다. 분자는 먼저 기수로 표현한다. 기수란 우리가 갯수를 셀 때의 “수”다. 반면에 분모를 영어로 표현할 때는 서수로 표현한다. 그리고 수의 표현 순서는 분자를 먼저 말하고 분모를 나중에 말한다.
분모는 영어로 “numerator”, 분자는 “denominator” 라고 하며, 분수를 영어로 표현하면 Fractional Number 또는 Fraction 이라고 한다.
분수 읽기 : 분자 / 분모 = 기수 / 서수
분수 영어로 읽기 – 분자가 1인 경우
1/9 one (a) ninth
1/7 one (a) seventh
1/6 one (a) sixth
1/4 one (a) quarter, one fourth
1/3 one (a) third
1/2 one (a) half
분수 영어로 읽기 – 분자가 2 이상 인 경우
분자가 2 이상인 경우 영어로 읽기 할 때는 분모에 “s”를 붙여준다.
4 / 5 four fifths
3 / 4 three fourths, three quarters
3 / 7 three sevenths
8 / 9 eight ninths
분수 영어로 읽기 – 대 분수인 경우 영어 분수 표현
6 2/7 six and two sevenths
1 1/2 one and a half
분수 영어로 읽기 – 분수 뒤에 명사가 따라오는 경우
분수가 뒤에 명사가 따라오는 경우 영어로 읽기 방법은 “of” 뒤에 붙여주되 , 분모에 s 가 붙어 있다면 없애고 쓴다.
4 / 5 meter four fifth of a meter
5 2 / 6 tons five and two sixth tons
분수 영어로 읽기 – 소숫점 숫자 읽기
소숫점을 읽는 경우 소숫점을 “point” 라 읽고, 소숫점의 뒤의 숫자는 하나씩 읽어준다.
0.5 nought point five
0.35 nought (zero) three five
0.527 nought (zero) point three seven five
8.9 eight point nine
1.5 one point five , one and a half
2.5 two point five, two and a half
6.34 six point three four
위키백과, 우리 모두의 백과사전
케이크를 네 등분한 뒤 한 조각을 가져갔을 때, 가져간 부분은 전체 케이크의 1/4이며, 남은 부분은 전체 케이크의 3/4이다.
분수(分數, 영어: fraction)는 수학에서 부분이 전체를 차지하는 비율을 나타내는 수식이다. 정수 a를 0이 아닌 정수 b로 나눈 몫을 a/b의 형식으로 나타낸 것이다. 예를 들어, 전체를 4등분하였을 때 3조각이 차지하는 비율은 분수 3/4로 나타내며, 이를 ‘4분의 3’ 이라고 읽는다. 3과 같이 가로줄 위에 쓰여 몇 조각을 취하는지를 나타내는 정수를 분자(영어: numerator)라고 하며, 4와 같이 가로줄 아래에 쓰여 1로 둔 전체를 몇 등분하였는지를 나타내는 0이 아닌 정수를 분모(영어: denominator)라고 하며, 분자와 분모 사이의 가로줄은 가로선(영어: fraction bar)이라고 한다.
분수가 나타낸 수는 소수, 백분율, 과학적 기수법과 같은 다른 방법으로도 나타낼 수 있다. 예를 들어, 분수 3/4은 육진 소수 0.43, 십진 소수 0.75, 또는 백분율 75% 또는 과학적 기수법 7.5 × 10-1로 나타낼 수도 있다. 분수는 분자가 분모에서 차지하는 비율을 나타낼 뿐 아니라, 분자와 분모의 비나 분자를 분모로 나눈 몫을 나타내기도 한다. 예를 들어, 3/4은 3과 4의 비 3 : 4(3 대 4)나, 3을 4로 나눈 몫 3 ÷ 4(3 나누기 4)를 나타낼 수 있다. 분수는 분자의 절댓값이 분모의 절댓값보다 작은 진분수와 그렇지 않은 가분수로 분류될 수 있으며, 분자가 1인 단위 분수, 분모가 2의 거듭제곱인 이진 분수와 같은 분수의 특별한 유형도 사용된다. 가분수는 정수 부분을 따로 분리하여 대분수 꼴로도 나타낼 수 있다. 또한, 모든 분수는 연분수 및 이집트 분수 꼴로 나타낼 수 있다. 분수를 다루는 데에는 약분, 통분의 기법이 사용되며, 분수는 다른 수와 마찬가지로 사칙 연산 등의 연산이 가능하다. 분자와 분모가 정수인 분수로 나타낼 수 있는 수를 유리수라고 한다. √2와 같이 분수로 나타낼 수 없는 수 또한 존재한다. 유리수가 수의 성질에 따른 분류라면, 분수는 단지 수에 대한 표기법이다.
분자와 분모가 정수가 아닌 분수 역시 생각할 수 있다. 이 경우, 분수가 나타내는 수는 더 이상 유리수가 아니다. 예를 들어, 분자와 분모를 다항식으로 두면 분수는 유리 함수가 되며, 분자와 분모를 대수적 정수로 두면 분수는 대수적 유리수가 된다. 추상대수학에서 이들은 정역의 분수체로 일반화된다.
정의 [ 편집 ]
분자가 정수 a {\displaystyle a} , 분모가 0이 아닌 정수 b {\displaystyle b} 인 분수는 a b {\displaystyle \textstyle {\frac {a}{b}}} 또는 a / b {\displaystyle a/b} 로 표기하며, ‘ b {\displaystyle b} 분의 a {\displaystyle a} ‘로 읽는다. 이는 비 a : b {\displaystyle a:b} 또는 몫 a ÷ b {\displaystyle a\div b} 으로 해석될 수 있다.
분수의 예에는 1/2, -5/8 = -5/8 = 5/-8, 27/5, 12/18 = 6/9 = 2/3 등이 있다.
특히, 분자가 a = 0 {\displaystyle a=0} 인 경우, 0 b = 0 {\displaystyle \textstyle {\frac {0}{b}}=0} 은 단순히 0이다. 또한, 분모가 b = 1 {\displaystyle b=1} 인 경우, a 1 = a {\displaystyle \textstyle {\frac {a}{1}}=a} 는 단순히 정수이다. 즉, 정수는 분수의 특수한 경우라고 생각할 수 있다. 분모가 0인 경우는 정의되지 않는다. 이는 0으로 나누기를 정의할 수 없기 때문이다.
분자가 1인 분수 1 b {\displaystyle \textstyle {\frac {1}{b}}} 를 단위 분수라고 한다. 예를 들어, 1/6는 단위 분수이다. 분모가 2의 거듭제곱인 분수 a 2 n {\displaystyle \textstyle {\frac {a}{2^{n}}}} 를 이진 분수라고 한다. 예를 들어, 5/8는 이진 분수이다.
진분수와 가분수 [ 편집 ]
분자와 분모가 양의 정수일 때, 만약 분자가 분모보다 작다면 진분수(眞分數, 문화어: 참분수, 영어: proper fraction)라고 한다. 예를 들어, 5/6, 3/8, 11/17은 진분수이다. 만약 분자가 분모보다 크거나 같다면 가분수(假分數, 영어: improper fraction) 또는 거꿀분수(-分數)라고 한다. 예를 들어, 7/6, 15/8, 26/17은 가분수이다.
보다 일반적으로, 분자와 분모가 정수일 때, 진분수는 절댓값이 1보다 작은 분수이다. 즉, -1 이상, 1 이하의 분수이다. 반대로 가분수는 절댓값이 1보다 크거나 같은 분수이다. 즉, -1 이하이거나 1 이상인 분수이다. 예를 들어, -3/5는 진분수, -13/9는 가분수이다.
대분수 [ 편집 ]
대분수(帶分數, 문화어: 데림분수, 영어: mixed fraction) 또는 혼분수(混分數)는 정수와 진분수의 합을 나타내는 분수이다. 정수 부분과 분수 부분 사이의 덧셈 기호 ‘+’는 생략된다. 예를 들어, 정수 부분이 3, 분수 부분이 2/7인 대분수는 3 + 2/7 대신 3 2/7과 같이 표기한다. 또한, 음의 대분수 -3 2/7은 -(3 + 2/7) = -3 – 2/7을 뜻한다.
대분수의 표기법 a b c {\displaystyle \textstyle a{\frac {b}{c}}} 는 곱셈 기호가 생략된 곱셈과 혼동될 수 있다. 이러한 혼동을 막기 위해 대분수를 a + b c {\displaystyle \textstyle a+{\frac {b}{c}}} 와 같이 표기하고, a {\displaystyle a} 와 b c {\displaystyle \textstyle {\frac {b}{c}}} 의 곱을 a ⋅ b c {\displaystyle \textstyle a\cdot {\frac {b}{c}}} 와 같이 표기할 수 있다.
가분수를 대분수로 바꿔 나타내려면, 나머지 있는 나눗셈을 사용하여, 가분수의 분자를 분모로 나눈 몫과 나머지를 위한 뒤, 몫을 정수 부분, 나머지를 분자, 원래의 분모를 새로운 분모로 취하면 된다. 예를 들어, 가분수 11/4은 분자 11을 분모 4로 나눈 몫이 2, 나머지가 3이므로, 이 가분수는 대분수 2 3/4과 같다.
번분수 [ 편집 ]
이 부분의 본문은 이 부분의 본문은 번분수 입니다.
번분수(繁分數, 영어: complex fraction) 또는 겹분수(-分數) 또는 복분수(複分數)는 분자와 분모가 분수 또는 대분수인 분수이다.[1][2][3][4][5] 이는 두 분수를 포함하는 수식의 나눗셈과 같다. 예를 들어, 다음은 모두 번분수이다.
1 2 1 3 , 12 3 4 26 {\displaystyle {\frac {\,{\dfrac {1}{2}}\,}{\dfrac {1}{3}}},\;{\frac {12{\dfrac {3}{4}}}{26}}}
번분수를 보통의 분수 꼴로 바꿔 나타내려면, 분수의 나눗셈을 사용하면 된다.[1][4][5] 예를 들어, 위의 번분수들의 경우 다음과 같다.
1 2 1 3 = 1 2 × 3 1 = 3 2 {\displaystyle {\frac {\,{\dfrac {1}{2}}\,}{\dfrac {1}{3}}}={\frac {1}{2}}\times {\frac {3}{1}}={\frac {3}{2}}} 12 3 4 26 = 51 4 × 1 26 = 51 104 {\displaystyle {\frac {12{\dfrac {3}{4}}}{26}}={\frac {51}{4}}\times {\frac {1}{26}}={\frac {51}{104}}}
번분수의 분수 막대의 우선 순위가 불분명하다면, 이는 무의미한 수식이 된다. 예를 들어, 5/10/20/40은 다음 두 의미 가운데 하나로 해석될 수 있으므로 무의미하다.
5 / ( 10 / ( 20 / 40 ) ) = 5 10 20 40 = 1 4 {\displaystyle 5/(10/(20/40))={\frac {5}{\,{\dfrac {10}{\,{\dfrac {20}{40}}\,}}\,}}={\frac {1}{4}}} ( 5 / 10 ) / ( 20 / 40 ) = 5 10 20 40 = 1 {\displaystyle (5/10)/(20/40)={\frac {\dfrac {5}{10}}{\,{\dfrac {20}{40}}\,}}=1}
번분수(영어: compound fraction)는 ‘3/5의 2/7’ 또는 ‘8/9의 6/7의 3/4’와 같은 분수를 일컫기도 한다.[2] 이는 분수의 곱셈을 통해 다음과 같이 일반적인 분수로 나타낼 수 있다.[2]
3 5 × 2 7 = 6 35 {\displaystyle {\frac {3}{5}}\times {\frac {2}{7}}={\frac {6}{35}}} 8 9 × 6 7 × 3 4 = 4 7 {\displaystyle {\frac {8}{9}}\times {\frac {6}{7}}\times {\frac {3}{4}}={\frac {4}{7}}}
분자와 분모가 정수인 분수를 단분수(單分數, 영어: simple fraction) 또는 홑분수(-分數)라고 불러 번분수와 구별하기도 한다. 하지만 번분수가 분수의 나눗셈 또는 곱셈과 다를 바 없으므로 이러한 구별은 부적절하다고 여겨진다.[2]
유한 연분수 [ 편집 ]
이 부분의 본문은 이 부분의 본문은 연분수 입니다.
연분수는 양의 정수를 더하는 연산과 역수 연산을 번갈아 가며 반복하여 얻는 분수이다. 예를 들어, 다음과 같은 수식은 유한 연분수이다.
1 + 1 2 + 1 5 + 1 4 + 1 3 {\displaystyle 1+{\dfrac {1}{2+{\dfrac {1}{5+{\dfrac {1}{4+{\dfrac {1}{3}}}}}}}}}
유한 연분수는 번분수의 일종이므로, 분수로 전환할 수 있다. 예를 들어, 위 유한 연분수의 분수 꼴을 계산하면 다음과 같다.
1 + 1 2 + 1 5 + 1 4 + 1 3 = 1 + 1 2 + 1 5 + 3 13 = 1 + 1 2 + 13 68 = 1 + 68 149 = 217 149 {\displaystyle 1+{\dfrac {1}{2+{\dfrac {1}{5+{\dfrac {1}{4+{\dfrac {1}{3}}}}}}}}=1+{\dfrac {1}{2+{\dfrac {1}{5+{\dfrac {3}{13}}}}}}=1+{\dfrac {1}{2+{\dfrac {13}{68}}}}=1+{\dfrac {68}{149}}={\frac {217}{149}}}
모든 분수는 유한 연분수 꼴로 나타낼 수 있으며, 그 방법은 유일하다. 유한 연분수를 분수 꼴로 바꾸는 과정을 반대로 진행하면 된다. 그 예는 다음과 같다.
41 16 = 2 + 9 16 = 2 + 1 1 + 7 9 = 2 + 1 1 + 1 1 + 2 7 = 2 + 1 1 + 1 1 + 1 3 + 1 2 {\displaystyle {\frac {41}{16}}=2+{\frac {9}{16}}=2+{\frac {1}{1+{\dfrac {7}{9}}}}=2+{\frac {1}{1+{\dfrac {1}{1+{\dfrac {2}{7}}}}}}=2+{\frac {1}{1+{\dfrac {1}{1+{\dfrac {1}{3+{\dfrac {1}{2}}}}}}}}}
양의 정수를 더하는 연산과 역수 연산을 무한히 반복하는 무한 연분수의 개념 역시 존재하지만, 이는 정수를 분자 분모로 하는 분수의 꼴로 나타낼 수 없다.
이집트 분수 [ 편집 ]
이 부분의 본문은 이 부분의 본문은 이집트 분수 입니다.
이집트 분수는 유한 개의 서로 다른 양의 분모를 갖는 단위 분수의 합을 나타내는 수식이다. 예를 들어 1/2 + 1/3는 이집트 분수이다. 모든 분수는 이집트 분수로 나타낼 수 있지만, 그 방법은 유일하지 않다. 예를 들어, 9/11의 이집트 분수 표현의 예는 다음과 같다.
9 11 = 1 3 + 1 11 + 1 231 = 1 4 + 1 11 + 1 12 + 1 231 = ⋯ {\displaystyle {\frac {9}{11}}={\frac {1}{3}}+{\frac {1}{11}}+{\frac {1}{231}}={\frac {1}{4}}+{\frac {1}{11}}+{\frac {1}{12}}+{\frac {1}{231}}=\cdots }
이집트인은 2/3을 제외한 분수들을 이러한 꼴로 나타내어 사용하였지만, 이집트인이 연분수 표현을 구하는 데 사용한 방법은 알려지지 않았다. 오늘날에는 이집트 분수 표현을 구하는 다양한 알고리즘이 존재한다.
산술 [ 편집 ]
분수는 정수가 그러한 것처럼 서로 더하거나 빼거나, 곱하거나 나눌 수 있다. 또한, 분수의 산술은 교환 법칙과 결합 법칙과 분배 법칙을 만족시킨다.
등식과 약분과 통분 [ 편집 ]
분자와 분모에 동시에 같은 0이 아닌 수를 곱하면, 분수의 값이 변하지 않는다. 예를 들어, 분수 1/2는 동시에 2를 곱하여 얻는 2/4와 같으며, 동시에 3을 곱하여 얻는 3/6과도 같다. 직관적인 관점에서, 전체를 2등분하여 1조각을 취하는 것과 4등분하여 2조각을 취하는 것과 6등분하여 3조각을 취하는 것은 당연히 같다. 또한, 분수의 곱셈을 생각하면, 분자와 분모에 동시에 n {\displaystyle n} 을 곱하는 것은 그 분수에 n n = 1 {\displaystyle \textstyle {\frac {n}{n}}=1} 을 곱하는 것과 같으므로, 원래의 분수를 결과로 한다.
a × n b × n = a b × n n = a b × 1 = a b {\displaystyle {\frac {a\times n}{b\times n}}={\frac {a}{b}}\times {\frac {n}{n}}={\frac {a}{b}}\times 1={\frac {a}{b}}}
반대로, 분자와 분모에 동시에 같은 0이 아닌 수로 나눠도 분수의 값은 변하지 않는다. 이에 따라, 분자와 분모가 동시에 같은 0이 아닌 정수의 배수라면, 동시에 그 정수로 나눠 분자와 분모를 더 작게 만들 수 있다. 이를 약분(約分, 영어: reduction, cancellation)이라고 한다. 두 분수가 같을 필요충분조건은 하나를 약분하여 다른 하나를 얻을 수 있는 것이다. 예를 들어, 36/60은 분자와 분모를 동시에 2로 나눠 18/30로 약분할 수 있으며, 다시 6으로 나눠 3/5로 약분할 수 있다.
36 60 = 36 ÷ 2 60 ÷ 2 = 18 30 = 18 ÷ 6 30 ÷ 6 = 3 5 {\displaystyle {\frac {36}{60}}={\frac {36\div 2}{60\div 2}}={\frac {18}{30}}={\frac {18\div 6}{30\div 6}}={\frac {3}{5}}}
분자와 분모가 서로소인 분수, 즉 분자와 분모의 양의 공약수가 1뿐인 분수를 기약 분수라고 한다. 예를 들어, 3/9는 3과 9가 공약수 3을 가지므로 기약 분수가 아니며, 1/3으로 약분될 수 있다. 그러나 3/8의 경우 3과 8의 양의 공약수가 1뿐이므로 기약 분수이며, 이는 더 작은 분자와 분모를 갖는 분수로 약분될 수 없다. 특히 모든 단위 분수는 기약 분수이다. 분수를 기약 분수 꼴로 약분하려면, 분자와 분모를 동시에 이 둘의 최대 공약수로 나누면 된다. 예를 들어, 36/60의 경우 36과 60의 최대 공약수가 12이므로, 12를 나눠 약분한 결과 3/5는 기약 분수이다. 최대 공약수를 구하는 방법에는 단제법과 소인수 분해와 유클리드 호제법이 있다.
36 60 = 36 ÷ 12 60 ÷ 12 = 3 5 {\displaystyle {\frac {36}{60}}={\frac {36\div 12}{60\div 12}}={\frac {3}{5}}}
분모가 다른 두 분수를 분모가 같은 두 분수로 만드는 것을 통분(通分)이라고 한다. 이 원래의 분자와 분모의 곱을 새로운 공통의 분모로 취할 수 있으며, 원래의 분자와 분모의 최소 공배수를 취할 수도 있다. 예를 들어, 분수 3/8와 5/12의 경우, 3/8의 분자와 분모에 동시에 12를 곱해 36/96을 얻고, 5/12의 분자와 분모에 동시에 8을 곱해 40/96을 만들면 96 = 8 × 12을 공통 분모로 하는 통분이 완성된다. 또한, 8과 12의 최소 공배수 24를 공통 분모로 하여 통분하면 9/24와 10/24를 얻는다. 최소 공배수를 구하는 방법에는 단제법과 소인수 분해가 있으며, 두 수의 곱을 최대 공약수로 나눈 몫과 같기도 하다. 통분은 분수의 크기 비교 및 덧셈과 뺄셈에서 응용된다.
분모가 거듭제곱근을 포함할 경우 분자와 분모에 적당한 상수를 곱하여 이를 제거할 수 있다. 이러한 기법을 분모의 유리화라고 한다. 예를 들어, 분수 1 2 {\displaystyle \textstyle {\frac {1}{\sqrt {2}}}} 의 분모를 유리화하면 2 2 {\displaystyle \textstyle {\frac {\sqrt {2}}{2}}} 를 얻으며, 분수 1 2 + 1 {\displaystyle \textstyle {\frac {1}{{\sqrt {2}}+1}}} 의 분모를 유리화하면 2 − 1 {\displaystyle {\sqrt {2}}-1} 를 얻는다.
부등식 [ 편집 ]
두 분수의 분모가 같을 경우, 만약 양수라면, 분자가 더 큰 쪽이 분수가 더 크다. 예를 들어, 다음과 같다.
3 5 < 4 5 ( ∵ 3 < 4 ) {\displaystyle {\frac {3}{5}}<{\frac {4}{5}}\qquad (\because 3<4)} 13 9 > 11 9 ( ∵ 13 > 11 ) {\displaystyle {\frac {13}{9}}>{\frac {11}{9}}\qquad (\because 13>11)}
만약 음수라면, 분자와 분모에 동시에 -1을 곱하면 분모가 양수가 되므로, 위의 방법에 따라 크기를 비교할 수 있다. 예를 들어, 다음과 같다.
3 − 10 > 9 − 10 ( ∵ 3 − 10 = − 3 10 , 9 − 10 = − 9 10 , − 3 > − 9 ) {\displaystyle {\frac {3}{-10}}>{\frac {9}{-10}}\qquad (\because {\frac {3}{-10}}={\frac {-3}{10}},\;{\frac {9}{-10}}={\frac {-9}{10}},\;-3>-9)}
두 분수의 분모가 다를 경우, 통분하여 분모를 같게 만든 뒤 크기를 비교하면 된다. 예를 들어, 다음과 같다.
3 8 < 5 12 ( ∵ 3 8 = 9 24 , 5 12 = 10 24 , 9 < 10 ) {\displaystyle {\frac {3}{8}}<{\frac {5}{12}}\qquad (\because {\frac {3}{8}}={\frac {9}{24}},\;{\frac {5}{12}}={\frac {10}{24}},\;9<10)} 두 분수를 분모의 곱을 공통 분모로 하여 통분한 뒤 크기를 비교하는 과정을 기호로 표현하면 다음과 같다. a b < c d ⟺ a d b d < b c b d ⟺ a d < b c ( b > 0 , d > 0 ) {\displaystyle {\frac {a}{b}}<{\frac {c}{d}}\iff {\frac {ad}{bd}}<{\frac {bc}{bd}}\iff ad
0,d>0)} 덧셈 [ 편집 ]
케이크의 1/2과 케이크의 1/4을 합하려면 먼저 공통 분모를 찾아야 한다. 만약 4를 공통 분모로 한다면, 1/2은 2/4과 같으므로, 1/2과 1/4을 합하면 3/4가 된다.
분수의 덧셈은 먼저 전체의 몇분의 몇을 취한 뒤, 다시 전체의 몇분의 몇을 취했을 때, 모두 합하여 전체의 몇분의 몇을 취했는지를 구하는 것과 같다.
두 분수의 분모가 같을 경우, 분모가 변하지 않은 채 분자만 서로 더하면 된다. 예를 들어, 다음과 같다.
3 14 + 5 14 = 3 + 5 14 = 8 14 = 4 7 {\displaystyle {\frac {3}{14}}+{\frac {5}{14}}={\frac {3+5}{14}}={\frac {8}{14}}={\frac {4}{7}}}
두 분수의 분모가 다를 경우, 통분하여 분모가 같도록 만든 뒤 더하면 된다. 예를 들어, 두 분모의 곱을 공통 분모로 취하는 경우 다음과 같다.
5 14 + 17 21 = 5 × 21 14 × 21 + 14 × 17 14 × 21 = 5 × 21 + 14 × 17 14 × 21 = 343 294 = 7 6 {\displaystyle {\frac {5}{14}}+{\frac {17}{21}}={\frac {5\times 21}{14\times 21}}+{\frac {14\times 17}{14\times 21}}={\frac {5\times 21+14\times 17}{14\times 21}}={\frac {343}{294}}={\frac {7}{6}}}
14와 21의 최소 공배수 42를 공통 분모로 취할 수도 있으며, 이 경우는 다음과 같다.
5 14 + 17 21 = 15 42 + 34 42 = 15 + 34 42 = 49 42 = 7 6 {\displaystyle {\frac {5}{14}}+{\frac {17}{21}}={\frac {15}{42}}+{\frac {34}{42}}={\frac {15+34}{42}}={\frac {49}{42}}={\frac {7}{6}}}
두 분수의 덧셈을 기호로 표현하면 다음과 같다.
a b + c d = a d b d + b c b d = a d + b c b d {\displaystyle {\frac {a}{b}}+{\frac {c}{d}}={\frac {ad}{bd}}+{\frac {bc}{bd}}={\frac {ad+bc}{bd}}}
보다 일반적으로, 세 분수의 덧셈을 기호로 표현하면 다음과 같다.
a b + c d + e f = a d f b d f + b c f b d f + b d e b d f = a d f + b c f + b d e b d f {\displaystyle {\frac {a}{b}}+{\frac {c}{d}}+{\frac {e}{f}}={\frac {adf}{bdf}}+{\frac {bcf}{bdf}}+{\frac {bde}{bdf}}={\frac {adf+bcf+bde}{bdf}}}
뺄셈 [ 편집 ]
분수의 뺄셈은 전체의 몇분의 몇을 취한 뒤, 다시 전체의 몇분의 몇을 돌려놓았을 때, 총 몇분의 몇을 취하였는지를 구하는 것과 같다.
덧셈과 마찬가지로, 분수의 뺄셈은 분모가 같으면 분자끼리만 빼며, 분모가 다를 경우 우선 통분한다. 예를 들어, 다음과 같다.
3 4 − 1 6 = 9 12 − 2 12 = 9 − 2 12 = 7 12 {\displaystyle {\frac {3}{4}}-{\frac {1}{6}}={\frac {9}{12}}-{\frac {2}{12}}={\frac {9-2}{12}}={\frac {7}{12}}}
분수의 뺄셈을 기호로 표현하면 다음과 같다.
a b − c d = a d b d − b c b d = a d − b c b d {\displaystyle {\frac {a}{b}}-{\frac {c}{d}}={\frac {ad}{bd}}-{\frac {bc}{bd}}={\frac {ad-bc}{bd}}}
곱셈 [ 편집 ]
분수의 곱셈은 전체의 몇분의 몇을 취한 뒤, 다시 취한 부분에서 몇분의 몇을 취했을 때, 두 번째로 취한 양이 전체의 몇분의 몇인지를 구하는 것과 같다.
두 분수의 곱셈에서는 분자는 분자끼리, 분모는 분모끼리 곱한다. 예를 들어, 다음과 같다.
4 15 × 5 6 = 4 × 5 15 × 6 = 20 90 = 2 9 {\displaystyle {\frac {4}{15}}\times {\frac {5}{6}}={\frac {4\times 5}{15\times 6}}={\frac {20}{90}}={\frac {2}{9}}}
이는 다음과 같이 해석된다. 우선 단위 분수 1/15와 1/6을 생각하자. 1/90의 90배는 1이므로, 1/90의 15배의 6배 역시 1이다. 즉, 1/90의 15배는 6배 해서 1이 되는 수 1/6과 같으며, 1/90은 15배 해서 1/6이 되는 수 1/15 × 1/6과 같다. 이제 곱 4/15 × 1/6을 생각하자. 1/6 = 15/90이므로, 4/15 × 1/6 = 4/90이다. 마지막으로, 4/15 × 5/6는 4/15 × 1/6의 5배, 즉 4/90의 5배, 즉 20/90이다. 이를 약분하면 2/9를 얻는다.
분수의 곱셈에서는 약분을 미리 할 수도 있다. 예를 들어, 다음과 같다.
4 15 × 5 6 = 4 2 15 3 × 5 1 6 3 = 2 3 × 1 3 = 2 × 1 3 × 3 = 2 9 {\displaystyle {\frac {4}{15}}\times {\frac {5}{6}}={\frac {\textstyle {\cancel {4}}^{2}}{\textstyle {\cancel {15}}^{3}}}\times {\frac {{\cancel {5}}^{1}}{{\cancel {6}}^{3}}}={\frac {2}{3}}\times {\frac {1}{3}}={\frac {2\times 1}{3\times 3}}={\frac {2}{9}}}
세 분수의 곱셈 역시 생각할 수 있다. 예를 들어, 다음과 같다.
1 3 × 3 4 × 4 5 = 1 3 1 × 3 1 4 1 × 4 1 5 = 1 1 × 1 1 × 1 5 = 1 5 {\displaystyle {\frac {1}{3}}\times {\frac {3}{4}}\times {\frac {4}{5}}={\frac {1}{{\cancel {3}}^{1}}}\times {\frac {{\cancel {3}}^{1}}{{\cancel {4}}^{1}}}\times {\frac {{\cancel {4}}^{1}}{5}}={\frac {1}{1}}\times {\frac {1}{1}}\times {\frac {1}{5}}={\frac {1}{5}}}
두 분수의 곱셈을 기호로 표현하면 다음과 같다.
a b × c d = a c b d {\displaystyle {\frac {a}{b}}\times {\frac {c}{d}}={\frac {ac}{bd}}}
나눗셈 [ 편집 ]
분수의 나눗셈은 분수의 곱셈의 역연산이다. 분수 a b {\displaystyle \textstyle {\frac {a}{b}}} 를 분수 c d {\displaystyle \textstyle {\frac {c}{d}}} 로 나눈 몫은, c d {\displaystyle \textstyle {\frac {c}{d}}} 만큼의 양을 새로운 전체 1로 생각하였을 때, a b {\displaystyle \textstyle {\frac {a}{b}}} 만큼의 양이 이 새로운 전체의 몇분의 몇인지를 구하는 것과 같다. 정수의 나눗셈과 마찬가지로, 분수의 나눗셈에서 나누는 수 c d {\displaystyle \textstyle {\frac {c}{d}}} 는 0이 아니어야 한다. 즉, 그 분자 c {\displaystyle c} 는 0이 아니어야 한다.
두 분수 1/2와 3/4의 나눗셈은 나누는수 3/4의 분자와 분모를 뒤바꿔 역수 4/3를 취한 뒤, 다시 서로 곱한다. 즉, 다음과 같다.
1 2 ÷ 3 4 = 1 2 × 4 3 = 1 2 1 × 4 2 3 = 2 3 {\displaystyle {\frac {1}{2}}\div {\frac {3}{4}}={\frac {1}{2}}\times {\frac {4}{3}}={\frac {1}{{\cancel {2}}^{1}}}\times {\frac {{\cancel {4}}^{2}}{3}}={\frac {2}{3}}}
이는 다음과 같이 해석된다. 분수의 나눗셈의 몫을 구하는 과정은 방정식 3/4x = 1/2의 해를 구하는 과정과 같다. 이 방정식의 좌변과 우변에 각각 4/3를 곱하면 3/4 × 4/3x = 1/2 × 4/3가 되며, 좌변의 두 분수의 곱셈의 결과는 1이므로 x = 1/2 × 4/3이다.
두 분수의 나눗셈을 기호로 표현하면 다음과 같다. 분모 b , d {\displaystyle b,d} 는 0이 아니며 추가로 나누는수의 분자 c {\displaystyle c} 가 0이 아님에 주의하자.
a b ÷ c d = a b × d c = a d b c {\displaystyle {\frac {a}{b}}\div {\frac {c}{d}}={\frac {a}{b}}\times {\frac {d}{c}}={\frac {ad}{bc}}}
응용 [ 편집 ]
소수와 분수 사이의 전환 [ 편집 ]
분수와 소수는 실수의 두 가지 표기법이며, 이 두 표기법은 서로 전환 가능하다. 분수를 소수로 바꾸는 방법은 분자를 분모로 나누는 세로식 나눗셈을 통한다. 만약 언젠가 ‘나머지’가 0이 된다면, 소수 자리의 수는 유한하다. 즉, 유한 소수를 얻는다. 예를 들어, 분수 1/4의 소수 표기는 유한 소수 0.25이다. 만약 언제나 ‘나머지’가 0이 아니라면, 무한 소수를 얻으며, ‘나머지’는 0부터 9까지의 10개의 숫자 사이에서 취하므로, 열 번 이상 나머지를 구하면 서로 같은 나머지의 쌍이 적어도 하나 나오므로, 소수는 순환 마디를 가진다. 즉, 순환소수를 얻는다. 예를 들어, 1/3의 소수 표기는 순환 소수 0.333…이며, 순환 마디는 3이다.
유한 소수를 분수로 나타내려면, 1 뒤에 소수 자리의 수만큼 0을 붙여 분모를 만든 뒤, 소수 부분을 (소수점을 제외한 채) 통째로 분자로 옮겨 적으면 된다. 예를 들어, 0.25 = 25/100 = 1/4이다.
순순환소수(소수 첫째 자리부터 순환 마디가 시작되는 순환 소수)를 분수로 나타내려면, 9를 순환 마디의 자리의 수만큼 적어 분모를 만든 뒤, 순환 마디를 분자로 취하면 된다. 예를 들어, 0.333… = 3/9 = 1/3이며, 0.626262… = 62/99이다. 이에 대한 엄밀하지 않은 증명은 다음과 같다.
0.626262 ⋯ = = 1 99 × 99 × 0.626262 … = 1 99 × ( 100 − 1 ) × 0.626262 … = 1 99 × ( 100 × 0.626262 ⋯ − 1 × 0.626262 … ) = 1 99 × ( 62.626262 ⋯ − 0.626262 … ) = 1 99 × 62 = 62 99 {\displaystyle {\begin{aligned}0.626262\dots =&={\frac {1}{99}}\times 99\times 0.626262\dots \\&={\frac {1}{99}}\times (100-1)\times 0.626262\dots \\&={\frac {1}{99}}\times (100\times 0.626262\dots -1\times 0.626262\dots )\\&={\frac {1}{99}}\times (62.626262\dots -0.626262\dots )\\&={\frac {1}{99}}\times 62\\&={\frac {62}{99}}\end{aligned}}}
혼순환소수(순순환 소수가 아닌 순환 소수)를 분수로 나타내려면, 먼저 1 뒤에 정수와 순환 마디가 나오기 이전까지의 소수 자리의 수만큼 0을 붙인 수를 곱하여, 정수와 순순환 소수의 합으로 만든 뒤, 이를 분수로 나타낸다. 마지막으로 곱하였던 수를 다시 나눠 얻은 결과를 분수로 나타내면 된다. 예를 들어, 다음과 같다.
1.523987987987 … = 1 1000 × ( 1523 + 0.987987987 … ) = 1 1000 × ( 1523 + 987 999 ) = 1 1000 × 1522464 999 = 1522464 999000 = 63436 41625 {\displaystyle {\begin{aligned}1.523987987987\dots &={\frac {1}{1000}}\times (1523+0.987987987\dots )\\&={\frac {1}{1000}}\times \left(1523+{\frac {987}{999}}\right)\\&={\frac {1}{1000}}\times {\frac {1522464}{999}}\\&={\frac {1522464}{999000}}\\&={\frac {63436}{41625}}\end{aligned}}}
관련 개념 [ 편집 ]
대수적 수 [ 편집 ]
분자와 분모를 대수적 정수로 취하면, 분수는 대수적 수가 된다. 예를 들어, 2 {\displaystyle {\sqrt {2}}} 와 3 {\displaystyle {\sqrt {3}}} 는 대수적 정수이므로, 2 3 {\displaystyle {\frac {\sqrt {2}}{\sqrt {3}}}} 은 대수적 수이다.
유리 함수 [ 편집 ]
분자와 분모를 다항식으로 취하면, 분수는 유리 함수가 된다. 예를 들어, x 2 + 2 x − 1 x 3 − 2 x 2 + x − 3 {\displaystyle {\frac {x^{2}+2x-1}{x^{3}-2x^{2}+x-3}}} 은 유리 함수이다.
분수체 [ 편집 ]
분수의 개념을 정역까지 일반화하면 분수체의 개념을 얻는다. 어떤 정역의 분수체의 원소는 정역의 두 원소의 형식적인 몫이며, 이들에게 보통의 분수와 유사한 사칙 연산을 주어 체를 이루게 할 수 있다. 예를 들어, 정수환의 분수체는 유리수체,[6] 대수적 정수환의 분수체는 대수적 수체, 다항식환의 분수체는 유리 함수체이다.
같이 보기 [ 편집 ]
각주 [ 편집 ]
[영어] 영어로 분수 읽기 (세 가지 방법)
반응형
분수를 영어로 읽는 방법
영어로 분수를 읽는 방법에는 3가지 방법이 있습니다.
※ 영어권에서는 분수를 기본적으로 분자 -> 분모 순서로 읽습니다.
728×90
1. 기수/서수 방법
간단하게 기수란, 개수 셀 때 사용하는 수 입니다. 또 서수는 순서를 셀 때 사용하는 수입니다.
기수로 (one, two, three … ten) 이 있고
서수는 (first, sencond. third, fourth …. tenth) 로 이어지는 수입니다.
기수로 분자를 읽고 서수로 분모를 읽는 방법으로 영어로 분수를 표현할 수 있습니다.
※ 분자가 1 이상의 숫자(복수)라면 분모(서수)에 s를 붙여야합니다.
\( 1 \over 2 \) [2분의 1] -> one-second
\( 3 \over 5 \) [5분의 3] -> three-fifths
\( 7 \over 9 \) [9분의 7] -> seven-ninths
분수식 영어로 1/2 one-second 3/5 three-fifths 7/9 seven-ninths
2. over 이용 방법
두 번째로 over를 이용하여 분수를 표현하는 방법입니다.
[분자] over [분모] 의 형태로 표현이 가능합니다.\( 1 \over 2 \) [2분의 1] -> one over two
\( 3 \over 5 \) [5분의 3] -> three over five
\( 7 \over 9 \) [9분의 7] -> seven over nine
분수식 영어로 1/2 one over two 3/5 three over five 7/9 seven over nine
3. out of 방법
세 번째로 out of를 이용하여 분수를 표현하는 방법입니다.
[분자] out of [분모] 의 형태로 표현이 가능합니다.\( 1 \over 2 \) [2분의 1] -> one out of two
\( 3 \over 5 \) [5분의 3] -> three out of five
\( 7 \over 9 \) [9분의 7] -> seven out of nine
분수식 영어로 1/2 one out of two 3/5 three out of five 7/9 seven out of nine
이미지 정리
1. 기수/서수 방법 2. over 이용 방법 3. out of 방법
반응형
“분자 분모” 영어로
“분자 분모” 영어로
어떻게 말을하는 “분자 분모” 영어로, 의 번역 “분자 분모” 영어로 :
분자 분모 Numerator denominator
이 페이지에서 포함 된 번역 문장의 많은 예를 찾을 수 “분자 분모” …에서 한국어 …에 영어
번역 엔진 검색. 예를 들면 사용자가 입력 및 외부 웹 사이트에서 수집됩니다..
분수, 분모, 분자
다른 뜻에 대해서는 molecule 문서를 참조하십시오. fraction 분수
denominator 분모
numerator 분자
1 분수 [ | ]
분모와 분자로 구성됨
전체에 대한 부분을 나타내는 수
어떤 수 a(분자)를 다른 수(분모)로 나눈 값을 [math]\displaystyle{ \frac{a}{b} }[/math] 꼴로 나타낸 것으로 나눗셈과 주요하게 관련있다.
2 분모 [ | ]
분수에서 가로줄 아래에 있는 수나 식
3 분자 [ | ]
분수에서 가로줄 위에 있는 수나 식
4 분수의 계산 [ | ] [math]\displaystyle{ {{2}\over{3}} \times {{1}\over{4}} = {{2\times1} \over {3 \times 4 } } = {2 \over 12} = {1 \over 6} }[/math] [math]\displaystyle{ {{2}\over{3}} + {{1}\over{4}} = {\left({2\times4}\right)+ \left({3\times1}\right) \over {3 \times 4 } } = {8+3 \over 12} = {11 \over 12} }[/math] [math]\displaystyle{ {{2}\over{3}} – {{1}\over{4}} = {\left({2\times4}\right)- \left({3\times1}\right) \over {3 \times 4 } } = {8-3 \over 12} = {5 \over 12} }[/math]
5 분수의 나눗셈 계산 [ | ] [math]\displaystyle{ {{2}\over{3}} \div {{1\over4}} = {{2 \over 3} \times {4 \over 1}} = {{2 \times 4}\over{3 \times 1}} = {{8}\over{3}} }[/math]
또는
[math]\displaystyle{ {{2}\over{3}} \div {{1\over4}} = {{2 \over 3} \over {1 \over 4}} = {{2 \times 4}\over{3 \times 1}} = {{8}\over{3}} }[/math]으로 같다.
6 번분수의 계산 [ | ]
이 부분의 본문은 이 부분의 본문은 번분수 입니다.
[math]\displaystyle{ {{2}\over{3}} = {{2\over1}\over{3\over \color{red}{1}}} = {{2\times \color{red}{1}}\over{3\times1}} }[/math] [math]\displaystyle{ {{1\over2}\over{3\over4}} = {{1\times4} \over {2 \times 3 } } = {4 \over 6}= {\cancel{4} {2} \over \cancel{6} {3}} = {2 \over 3} }[/math]7 같이 보기 [ | ]
영어로 분수(1/4, 7/9, 1 3/5) 읽는 법
안녕하세요. 비스카이비전입니다. 저는 영어 글을 읽을 때 보통 마음 속으로 따라 읽습니다. 그런데 읽다가 막히는 순간들이 있습니다. 바로 숫자들을 만났을 때입니다. 특히 분수가 나오면 그냥 한글로 읽고 넘어갈 때가 많습니다. ‘이것들 어떻게 읽지?’
영어로 분수 읽는 방법
오늘은 분수를 영어로 어떻게 읽는지에 대해 정리해보도록 하겠습니다. 일단 기본적으로 영어로 분수를 읽을 때는 분자는 기수로, 분모는 서수로 읽습니다. 기수는 하나(one), 둘(two), 셋(three), 넷(four), 다섯(five)과 같이 읽는 것을 뜻하고, 서수는 첫째(first), 둘째(second), 셋째(third), 넷째(fourth), 다섯째(fifth)와 같이 읽는 것을 의미합니다. 그리고 분수를 읽을 때는 분자를 먼저 읽고 분모를 그 다음에 읽습니다.
그럼 이제 예들을 통해 좀 더 확실하게 살펴보도록 하겠습니다.
1/5 one fifth
2/5 two fifths
3/5 three fifths
28/56 twenty eight fifty sixths
위 예들을 통해 알 수 있듯이 분자가 2이상이면 분모에 s를 붙여줍니다. 그래서 fifth가 fifths가 된 것입니다.
1/2 one half
1/4 one fourth = one quarter
2/4 two fourths = two quarters
3/4 three fourths = three quarters
1/2은 one half라고 읽습니다. 1/4은 one quarter로 읽는데, 마찬가지로 분자가 2이상이면 quarter에 s가 붙습니다.
그리고 “분자 + over + 분모”의 방식으로 읽기도 합니다. 분자가 꽤 큰 경우에 자주 사용하는데, 작을 때 사용해도 괜찮습니다.
2/3 two over three
13/25 thirteen over twenty five
47/100 fourty seven over a hundred
대분수는 어떻게 읽을까요?
3 5/8 three and five eighths
6 4/5 six and four fifths
한국어와 비슷합니다. 3 5/8을 3과 8분의 5 이런 식으로 읽는 것처럼 and을 붙여줍니다.
이 정도면 왠만한 형태의 분수는 다 읽을 수 있겠죠??
참고자료
[1] http://www.englishnumber.com/fractions/how-to-pronounce-fractions-in-english.html, englishnumbers, “how to pronoucee fractions”
키워드에 대한 정보 분모 분자 영어로
다음은 Bing에서 분모 분자 영어로 주제에 대한 검색 결과입니다. 필요한 경우 더 읽을 수 있습니다.
이 기사는 인터넷의 다양한 출처에서 편집되었습니다. 이 기사가 유용했기를 바랍니다. 이 기사가 유용하다고 생각되면 공유하십시오. 매우 감사합니다!
사람들이 주제에 대해 자주 검색하는 키워드 [야나두 숫자영어] 영어로 \”분수\” 읽기l 야나두 l 원예나 l 영어회화 l
- 야나두
- 생활영어
- 기초영어
- 기초회화
- 기초영어회화
- 영어표현
- 생활표현
- 원어민표현
- 영어발음
- 패턴영어
- 원예나
- 야나두영어
- 10분영어
- 직장인영어
- 무료강의
- 숫자영어
- 영어숫자
- 토익
- 오픽
- 토익스피킹
- 토스
YouTube에서 분모 분자 영어로 주제의 다른 동영상 보기
주제에 대한 기사를 시청해 주셔서 감사합니다 [야나두 숫자영어] 영어로 \”분수\” 읽기l 야나두 l 원예나 l 영어회화 l | 분모 분자 영어로, 이 기사가 유용하다고 생각되면 공유하십시오, 매우 감사합니다.