Semiconductor Physics And Devices 4Th Edition | Introduction To Semiconductor Physics And Devices 22036 투표 이 답변

당신은 주제를 찾고 있습니까 “semiconductor physics and devices 4th edition – Introduction to Semiconductor Physics and Devices“? 다음 카테고리의 웹사이트 https://ppa.charoenmotorcycles.com 에서 귀하의 모든 질문에 답변해 드립니다: https://ppa.charoenmotorcycles.com/blog. 바로 아래에서 답을 찾을 수 있습니다. 작성자 Jordan Edmunds 이(가) 작성한 기사에는 조회수 145,527회 및 좋아요 1,606개 개의 좋아요가 있습니다.

semiconductor physics and devices 4th edition 주제에 대한 동영상 보기

여기에서 이 주제에 대한 비디오를 시청하십시오. 주의 깊게 살펴보고 읽고 있는 내용에 대한 피드백을 제공하세요!

d여기에서 Introduction to Semiconductor Physics and Devices – semiconductor physics and devices 4th edition 주제에 대한 세부정보를 참조하세요

https://www.patreon.com/edmundsj
If you want to see more of these videos, or would like to say thanks for this one, the best way you can do that is by becoming a patron – see the link above :). And a huge thank you to all my existing patrons – you make these videos possible.
In this video, I talk about the roadmap to learning semiconductor physics, and what the driving questions we are trying to answer are.
This is part of my series on semiconductor physics (often called Electronics 1 at university). This is based on the book Semiconductor Physics and Devices by Donald Neamen, as well as the EECS 170A/174 courses taught at UC Irvine.

Hope you found this video helpful, please post in the comments below anything I can do to improve future videos, or suggestions you have for future videos.

semiconductor physics and devices 4th edition 주제에 대한 자세한 내용은 여기를 참조하세요.

Semiconductor Physics and Devices – OptiMa-UFAM

SEMICONDUCTOR PHYSICS & DEVICES: BASIC PRINCIPLES, FOURTH EDITION … Semiconductor physics and devices : basic principles / Donald A. Neamen. — 4th ed.

+ 여기를 클릭

Source: www.optima.ufam.edu.br

Date Published: 8/5/2021

View: 2923

Semiconductor Physics and Devices – Fulvio Frisone

Semiconductor physics and devices : basic principles 1 Donald A. Neamen. -3rd ed. p. cm. Includes bibliographical references and index. ISBN 0-07-232 107- …

+ 더 읽기

Source: www.fulviofrisone.com

Date Published: 9/5/2021

View: 2850

Semiconductor Physics And Devices: Basic Principles …

AbeBooks.com: Semiconductor Physics And Devices: Basic Principles (9780073529585) by Donald A. Neamen and a great selection of similar New, Used and …

+ 여기에 더 보기

Source: www.abebooks.com

Date Published: 12/5/2022

View: 6519

Neamen Semiconductor Physics Devices 4th Edition

We pay for Neamen Semiconductor Physics Devices 4th Edition and numerous books collections from fictions to scientific research in any way. in the course of …

+ 여기에 보기

Source: www.personnalisation.atelier.decathlon.fr

Date Published: 5/13/2021

View: 6486

주제와 관련된 이미지 semiconductor physics and devices 4th edition

주제와 관련된 더 많은 사진을 참조하십시오 Introduction to Semiconductor Physics and Devices. 댓글에서 더 많은 관련 이미지를 보거나 필요한 경우 더 많은 관련 기사를 볼 수 있습니다.

Introduction to Semiconductor Physics and Devices
Introduction to Semiconductor Physics and Devices

주제에 대한 기사 평가 semiconductor physics and devices 4th edition

  • Author: Jordan Edmunds
  • Views: 조회수 145,527회
  • Likes: 좋아요 1,606개
  • Date Published: 2018. 3. 26.
  • Video Url link: https://www.youtube.com/watch?v=OVnVN0vSXn0

Physics of Semiconductor Devices, 4th Edition

S. M. SZE, P H D, is Honorary Chair Professor, College of Electrical and Computer Engineering, National Chiao Tung University, Taiwan. He has made fundamental and pioneering contributions to semiconductor devices, particularly his co-discovery of the floating-gate memory (FGM) effect that has ushered in the Fourth Industrial Revolution. Dr. Sze has authored, co-authored, and edited more than 400 papers and 16 books. He is a celebrated Member of IEEE, an Academician of Academia Simica, and a member of the US National Academy of Engineering.

YIMING LI, P H D, is Full Professor of Electrical and Computer Engineering at National Chiao Tung University, Taiwan. He has been a Visiting Professor in Stanford University, Grenoble INP, and Tohoku University. He has published more than 300 technical articles in journals, conferences, and book chapters. Dr. Li is an active member of IEEE and has served on technical committees for many international professional conferences including IEDM. He is the recipient of the Pan Wen-Yuan Foundation’s Research Fellowship Award and the Chinese Institute of Electrical Engineering’s Outstanding Young Electrical Engineer Award.

Semiconductor Physics and Devices 4th edition Neaman pdf

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 1

By D. A. Neamen Problem Solutions

Chapter 1

Problem Solutions

1.

(a) fcc: 8 corner atoms 8/1  1 atom

6 face atoms  2/1  3 atoms

Total of 4 atoms per unit cell

(b) bcc: 8 corner atoms 8/1  1 atom

1 enclosed atom =1 atom Total of 2 atoms per unit cell

(c) Diamond: 8 corner atoms 8/1  1 atom

6 face atoms 2/1  3 atoms

4 enclosed atoms = 4 atoms Total of 8 atoms per unit cell

1.

(a) Simple cubic lattice: a  2 r

Unit cell vol  

3 3 3  a  2 r  8 r

1 atom per cell, so atom vol  

 

  3

4 1

3  r

Then

Ratio 100 % 52 %4. 8

3

4

3

3

 

 

 

 

 r

 r

(b) Face-centered cubic lattice

r

d d  r  a  a   2 2  2

4 2

Unit cell vol  

3 3 3  a  2 2  r  16 2  r

4 atoms per cell, so atom vol  

 

  3

4 4

3  r

Then

Ratio

 

100 % 74 % 16 2

3

4 4

3

3

  

 

 

 

 r

 r

(c) Body-centered cubic lattice

d  r  a  a   r 3

4 43

Unit cell vol

3 3

3

4 

 

 

 

  a   r

2 atoms per cell, so atom vol  

 

  3

4 2

3  r

Then

Ratio

 

100 % 68 %

3

4

3

4 2

3

3

 

 

 

 

 r

 r

(d) Diamond lattice

Body diagonal  d  r  a  a   r 3

8 8 3

Unit cell vol

3 3

3

8 

 

 

 

  

r a

8 atoms per cell, so atom vol  

 

 

 

  3

4 8

3  r

Then

Ratio

 

100 % 34 %

3

8

3

4 8

3

3

 

 

 

 

 

 r

 r

1.

(a)

o a  .5 43 A ; From Problem 1,

a   r 3

8

Then

  o

A

a r .1 176 8

.5 43 3

8

3   

Center of one silicon atom to center of

nearest neighbor

o  2 r  .2 35 A (b) Number density

 

22 83

5 10 .5 43 10

8   

 

cm  3

(c) Mass density

    

23

22

.6 02 10

.. 5 10 28. 09

    NA

NAtWt 

 .2 33 grams/cm 3

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 1

By D. A. Neamen Problem Solutions

1.

(a) 4 Ga atoms per unit cell

Number density

 

83 .5 65 10

4  

Density of Ga atoms 22  .2 22  10 cm  3

4 As atoms per unit cell

Density of As atoms

22  .2 22  10 cm  3

(b) 8 Ge atoms per unit cell

Number density

 

83 .5 65 10

8  

Density of Ge atoms 22  .4 44  10 cm  3

1.

From Figure 1.

####### (a)   a

a d .0 4330 2

3

2

 

  

  

 

  

o .0 4330 .5 65  d  .2 447 A

(b)   a

a d 2 .0 7071 2

  

  

 

  

o  .0 7071 .5 65  d  .3 995 A

1.

     

  

 54. 74 3 2

2

3 2

2 2 2

sin

 

a

a

 109 5.

1.

(a) Simple cubic:

o a  2 r  9 A

(b) fcc:

o A

r a .5 515 2

4  

(c) bcc:

o A

r a .4 503 3

4  

(d) diamond:

#######   o

A

r a .9 007 3

42  

1.

####### (a)  .12 035 2   .12 035  2 rB

o rB  .0 4287 A

(b)  

o a  .12 035  .2 07 A

(c) A-atoms: # of atoms 1 8

1  8  

Density

 

83 .2 07 10

1  

23  .1 13  10 cm  3

B-atoms: # of atoms 3 2

1  6  

Density

 

83 .2 07 10

3  

23  .3 38  10 cm  3

1.

(a)

o a  2 r  5 A

8

of atoms 1

1  8  

Number density

 

83 5 10

1

 

22  .1 097  10 cm  3

Mass density

#######  

NA

NAtWt .. 

  

23

22

.6 02 10

.1 0974 10 12 5.

 

 .0 228 gm/cm

3

(b)

o A

r a .5 196 3

4  

8

of atoms 1 2

1 8   

Number density

 

83 .5 196 10

2

 

22  .1 4257  10 cm

 3

Mass density

  

23

22

.6 02 10

.1 4257 10 12 5.

 

 .0 296 gm/cm

3

1. From Problem 1, percent volume of fcc atoms is 74%; Therefore after coffee is ground,

Volume = 0 cm 3

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 1

By D. A. Neamen Problem Solutions

1.

(a)

  313

1

1 , 3

1 , 1

1  

  

(b)

  121

4

1 , 2

1 , 4

1  

  

1.

Intercepts: 2, 4, 3 

  

  3

1 , 4

1 , 2

1

(634) plane

1.

(a)

o d  a  .5 28 A

(b)

o A

a d .3 734 2

2  

(c)

o A

a d .3 048 3

3  

1.

(a) Simple cubic

(i) (100) plane:

Surface density

 

2 82 .4 73 10

1 1

 

  a

14  .4 47  10 cm  2

(ii) (110) plane:

Surface density 2

1 2 a

14  .3 16  10 cm  2

(iii) (111) plane:

Area of plane bh 2

1 

where

o b  a 2  .6 689 A

Now

   

2

2 2 2 2 4

3

2

2 2 a

a h a  

  

So  

o h .4 73 .5 793 A 2

6  

Area of plane

  

8 8 .6 68923 10 .5 79304 10 2

1     

16 19. 3755 10

   cm 2

Surface density 16 19. 3755 10

6

1 3

 

14  .2 58  10 cm  2

(b) bcc (i) (100) plane:

Surface density

14 2 .4 47 10

1    a

cm  2

(ii) (110) plane:

Surface density 2

2 2 a

14  .6 32  10 cm  2

(iii) (111) plane:

Surface density 16 19. 3755 10

6

1 3

 

14  .2 58  10 cm  2

(c) fcc (i) (100) plane:

Surface density

14 2 .8 94 10

2    a

cm  2

(ii) (110) plane:

Surface density 2

2 2 a

14  .6 32  10 cm  2

(iii) (111) plane:

Surface density 16 19. 3755 10

2

1 3 6

1 3

 

  

15  .1 03  10 cm  2

1. (a) (100) plane: – similar to a fcc:

Surface density

 

82 .5 43 10

2

 

14  .6 78  10 cm  2

(b) (110) plane:

Surface density

 

82 .52 43 10

4  

14  .9 59  10 cm  2

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 1

By D. A. Neamen Problem Solutions

(c) (111) plane:

Surface density

  

82 .523 43 10

2  

14  .7 83  10 cm  2

1.

  o

A

r a .6 703 2

.24 37

2

4   

(a) #/cm 3

 

3 83 .6 703 10

2 4

1 6 8

1 8

 

    a

22  .1 328  10 cm  3

(b) #/cm

2

2

2

1 2 4

1 4

2 a

   

.6 703 10  2

2  82 

14  .3 148  10 cm  2

(c)

  o

A

a d .4 74 2

.6 703 2

2

2   

(d) # of atoms 2 2

1 3 6

1  3    

Area of plane: (see Problem 1) o b  a 2  .9 4786 A

o A

a h .8 2099 2

6  

Area

  

8 8 .9 4786 10 .8 2099 10 2

1

2

1    bh   

15 .3 8909 10    cm 2

#/cm 2 15 .3 8909 10

2  

= 14 .5 14  10 cm  2

  o

A

a d .3 87 3

.6 703 3

3

3   

1.

Density of silicon atoms

22  5  10 cm  3 and

4 valence electrons per atom, so

Density of valence electrons 23  2  10 cm  3

1. Density of GaAs atoms

 

22 83

.4 44 10 .5 65 10

8   

 

cm  3

An average of 4 valence electrons per atom, So Density of valence electrons 23  .1 77  10 cm  3

1.

(a) 100 % 10 % 5 10

5103 22

17    

(b) 100 % 4 10 % 5 10

2106 22

15     

1. (a) Fraction by weight

  

  

7 22

16 .1 542 10 5 10 28. 06

2 10 10. 82    

 

(b) Fraction by weight

  

  

5 22

18 .2 208 10 5 10 28. 06

10 30. 98    

1.

Volume density 16 3 2 10

1    d

cm  3

So 6 .3 684 10  d   cm

o  d  368 4. A

We have

o ao  .5 43 A

Then 67. 85 .5 43

368 4.   ao

d

1.

Volume density

15 3 4 10

1    d

cm

 3

So

6 .6 30 10

 d   cm

o  d  630 A

We have

o ao  .5 43 A

Then 116 .5 43

630   ao

d

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 2

By D. A. Neamen Problem Solutions

(b)

   

27 19 .12 67 10 6.12 10

  p   

23 .2 532 10

   kg-m/s

11 23

34 .2 62 10 .2 532 10

.6 62510  

   

  m

or

o  .0 262 A

2.

.0 0259  .0 03885

2

3

2

3   

  

 Eavg  kT  eV

Now

pavg  2 mEavg

   

31 19 .92 11 10 .0 03885 6 10

    

or

25 .1 064 10  pavg   kg-m/s

Now

9 25

34 .6 225 10 .1 064 10

.6 62510  

   

   p

h  m

or o  62. 25 A

2.

p

p p

hc E h 

  

Now

m

p E e e 2

2  and

2

2

1 

 

 

 

    e

e e

e

h

m

E

h p  

Set Ep  Ee and  p  10  e

Then

2 2 10

2

1

2

1 

  

 

 

 

  p e p

h

m

h

m

hc

  

which yields

mc

h p 2

100  

100

2 2 100

2 mc mc h

hc hc E E p

p      

  

100

.92 11 10 3 10

31 82   

15 .1 64 10    J  10. 25 keV

2.

(a) 10

34

85 10

.6 625 10 

   

h p

26 .7 794 10

   kg-m/s

4 31

26 .8 56 10 .9 11 10

.7 794 10   

   

m

p  m/s

or 6  .8 56  10 cm/s

  

2 31 42 .9 11 10 .8 56 10 2

1

2

1      E m 

21 .3 33 10    J

or

2 19

21 .2 08 10 6 10

.3 33410  

   

 E  eV

(b)   

31 32 .9 11 10 8 10 2

1   

 E

23 .2 915 10

   J

or 4 19

23 .1 82 10 6 10

.2 91510  

   

 E  eV

  

31 3   .9 11  10 8  10  p m 

27 .7 288 10    kg-m/s

8 27

35 .9 09 10 .7 288 10

.6 62510  

   

   p

h  m

or

o  909 A

2.

(a)

  

10

34 8

1 10

.6 625 10 3 10 

     

hc E h

15 .1 99 10    J

Now

19

15

6 10

.1 99 10 

     e

E E Ve V

4 V  .1 24  10 V 12 4. kV

(b)   

31 15 2 .92 11 10 .1 99 10

  p  mE   

23 .6 02 10

   kg-m/s Then

11 23

34 .1 10 10 .6 02 10

.6 62510  

   

   p

h  m

or o  .0 11 A

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 2

By D. A. Neamen Problem Solutions

2.

6

34

10

.1 054 10 

   

  x

p

28 .1 054 10

   kg-m/s

2.

(a) (i)  xp 

26 10

34 .8 783 10 12 10

.1 05410  

   

  p  kg-m/s

(ii) p m

p

dp

d p dp

dE E  

 

 

 

     2

2

m

pp p m

p     2

2

Now p  2 mE

   

31 19 92 10 16 6 10

    

24 .2 147 10

   kg-m/s

so

  

31

24 26

9 10

.2 1466 10 .8 783 10 

 

   E 

19 .2 095 10

   J

or .1 31 6 10

.2 095 10 19

19  

   

 E eV

(b) (i)

26 .8 783 10

  p   kg-m/s

(ii)    

28 19 52 10 16 6 10

  p   

23 .5 06 10

   kg-m/s

  

28

23 26

5 10

.5 06 10 .8 783 10 

 

   E 

21 .8 888 10

   J

or

2 19

21 .5 55 10 6 10

.8 88810  

   

  E  eV

2.

32 2

34 .1 054 10 10

.1 05410  

  

  

  x

p

 kg-m/s

1500

.1 054 10

 32  

    m

p p m  

36 7 10    m/s

2. (a)   tE 

  

16 19

34 .8 23 10 6.18 10

.1 05410  

   

  t  s

(b) 10

34

5 10

.1 054 10 

  

  x

p

25 .7 03 10    kg-m/s

2.

####### (a) If  1  , tx and  2  , tx are solutions to

Schrodinger’s wave equation, then

 

   

 

t

tx xV tx j x

tx

m 

    

  

 , ,

,

2

1 2 1

1

2 2 

and

 

   

 

t

tx xV tx j x

tx

m 

    

  

 , ,

,

2

2 2 2

2

2 2 

Adding the two equations, we obtain

     tx tx 

m x

, , 2 2 1 2

2 2   

 



       xV  1 , tx  2 , tx 

     tx tx 

t

j  1 ,  2 , 

  

which is Schrodinger’s wave equation. So

#######  1    , tx  2 , tx is also a solution.

####### (b) If  1    , tx  2 , tx were a solution to

Schrodinger’s wave equation, then we could write

 1 2    1 2 

2

2 2

2

   

 

 xV m x

 1  2 

  t

j 

which can be written as

 

  

  

  

   

 

m x x x x

1 2 2

1

2

2 2

2

2

1

2 2 2

  

 

  

  

     t t

xV j 1 2

2 1 2  1

Dividing by 1  2 , we find

 

  







 

   

 

   

m x x x x

1 2

21

2

1

2

1

2

2

2

2

2 1 1 2

2

  

  



 



  t t

xV j 1

1

2

2

1 1 

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 2

By D. A. Neamen Problem Solutions

2.

####### P   x dx

2

 

(a) dx

x

a

a

 

  

  

  

 2

cos

22

4/

4/

40

2 sin

2

2

a

a

a

x

x

a 

 

  

 

  

  

  

  

 

  

 

  

 

  

 

  

 

a

a

a 

4

2

sin

2

2 4

  

 

  

   

  

  4 

1

8

2 a a

a

or P  .0 409

(b) dx a

x

a

P

a

a

 

  

  

  

 

2/

4/

2 cos

2

2/

4 4/

2 sin

2

2

a

a a

a

x

x

a 

 

  

 

  

  

  

  

 

 

  

 

  

 

 

  

  

  

 

a

a

a

a

a 

4

2

sin

4 8

sin

4

2

 

  

     4 

1

8

1 0 4

1 2

or P  .0 0908

(c) dx a

x

a

P

a

a

 

  

  

  

 

2 

2/

2/

cos

2

2/

2/

4

2 sin

2

2

a

a a

a

x

x

a



 

  

 

  

  

  

  

   

 

  

  

  

 

 

  

  

  

 

a

a

a

a

a 

4

sin

4 4

sin

4

2

or P  1

2.

(a) dx a

x

a

P

a

 

  

  

  

 

2  sin

22

4/

4/

2 4

4 sin

2

2

a

a

a

x

x

a 

 

  

 

  

  

  

  

 

 

  

  

  

 

a

a

a 

8

sin

8

2

or P  .0 25

(b) dx a

x

a

P

a

a

 

  

  

  

 

2  sin

22

2/

4/

2/

4/

2 4

4 sin

2

2

a

a a

a

x

x

a 

 

  

 

  

  

  

  

   

 

  

 

  

 

 

  

  

  

 

a

a

a

a

a 

8

sin

8 8

sin 2

4

2

or P  .0 25

(c) dx a

x

a

P

a

a

 

  

  

  

 

2  sin

22

2/

2/

2/

2/

2 4

4 sin

2

2

a

a a

a

x

x

a



 

  

 

  

  

  

  

   

 

  

  

  

 

 

  

  

  

 

a

a

a

a

a 

8

sin 2

8 4

sin 2

4

2

or P  1

2.

(a) (i) 4 8

12 10 8 10

8 10  

   k

p

  m/s

or 6  p  10 cm/s

9 8 .7 854 10 8 10

22    

 

   k

m

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 2

By D. A. Neamen Problem Solutions

or

o  78. 54 A

(ii)   

31 4 .9 11 10 10

 p  m   27 .9 11 10    kg-m/s

  

2 31 42 .9 11 10 10 2

1

2

1  E  m   

23 .4 555 10    J

or 4 19

23 .2 85 10 6 10

.4 55510  

   

 E  eV

(b) (i) 4 9

13 10 5 10

5 10   

   k

p

  m/s

or

6  p  10 cm/s

9 9 .4 19 10 5 10

22    

 

   k

m

or

o  41 9. A

(ii)

27 .9 11 10

 p   kg-m/s 4 .2 85 10

 E   eV

2.

(a)  

j  kx t  tx Ae    , 

(b)   

19 2 2

1 E  .0 025 6  10  m  

 

31 2 .9 11 10 2

1    

so

4  .9 37  10 m/s 6  .9 37  10 cm/s

For electron traveling in  x direction, 6   .9 37  10 cm/s

  

31 4   .9 11  10  .9 37  10  p m 

26 .8 537 10    kg-m/s

9 26

34 .7 76 10 .8 537 10

.6 62510  

   

   p

h  m

8 9 .8 097 10 .7 76 10

2 2   

  

 k m  1

  

8 4  k  .8 097  10 .9 37  10

or 13  .7 586  10 rad/s

2.

(a)   

31 4   .9 11  10 5  10

 p m  26 .4 555 10

   kg-m/s

8 26

34 .1 454 10 .4 555 10

.6 62510  

   

   p

h  m

8 8 .4 32 10 .1 454 10

2 2   

  

 k m  1

  

8 4  k  .4 32  10 5  10 13  .2 16  10 rad/s

(b)   

31 6 .9 11 10 10

 p   25 .9 11 10    kg-m/s

10 25

34 .7 27 10 .9 11 10

.6 62510  

   

  m

9 10 .8 64 10 .7 272 10

2   

 

 k m  1

  

9 6 15  .8 64  10 10  .8 64  10 rad/s

2.

 

  

31 102

2 342 2

2

222

.92 11 10 75 10

.1 054 10

2  

 

  

 n 

ma

n En

 

2 21 .1 0698 10  En  n  J

or

 

19

2 21

6 10

.1 0698 10 

 

n En

or  

2 3 .6 686 10

 En  n  eV

Then 3 1 .6 6910

 E   eV 2 2 .2 6710

 E   eV 2 3 .6 0210

 E   eV

2.

(a)

 

  

31 102

2 342 2

2

222

.92 11 10 10 10

.1 054 10

2  

 

  

 n 

ma

n En

 

2 20 .6 018 10   n  J

or

 

.0 3761 

6 10

.6 018102 19

2 20 n

n En  

  

 eV

Then E 1  .0 376 eV

E 2  .1 504 eV

E 3  .3 385 eV

(b) E

hc



  

19 .3 385 .1 504 6 10

  E    19 .3 01 10

   J

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 2

By D. A. Neamen Problem Solutions

2

2

2

2

2

2

z

Z XY y

Y XZ x

X YZ 

  

  

2 2  XYZ 

mE

Dividing by XYZ and letting 2

2 2

mE k  , we

find

(1) 0

1112 2

2

2

2

2

2   

   

   

  k z

Z

y Z

Y

x Y

X

X

We may set

12 2

2 2 2

2   

   

  k X x

X k x

X

X

x x

Solution is of the form

#######   xX  A sin  xxk  B cos  xxk

####### Boundary conditions: X   0  0  B  0

####### and  

a

n xX a k

x x

   0  

where nx  …,2,

Similarly, let

2 2

2 1 ky y

Y

Y

 

  and

2 2

2 1 kz z

Z

Z

 

 

Applying the boundary conditions, we find

a

n k

y y

  , ny  …,2,

a

n k

z z

  , nz  3,2, …

From Equation (1) above, we have

2 2 2 2  kx  ky  kz  k 

or

2

2 2 2 2 2

mE kx  ky  kz  k 

so that

 

2 2 2 2

22

2

nnn nx ny nz ma

E E zyx    



2.

(a)

   

 , 0

, , 2 2 2

2

2

2    

  

 yx

mE

y

yx

x

yx 

 

Solution is of the form:

 , yx  A sin xxk sin yyk

We find

#######  

Ak xk yk x

yx x cos x sin y

,   



 

Ak xk yk x

yx x sin x sin y

, 2 2

2   



#######  

Ak xk yk y

yx y sin x cos y

,   



 

Ak xk yk y

yx y sin x sin y

, 2 2

2   



Substituting into the original equation, we find:

(1) 0

2 2

2 2     

mE kx ky

From the boundary conditions,

A sin xak  0 , where

o a  40 A

So a

n k

x x

  , nx  …,3,2,

Also A sin ybk  0 , where

o b  20 A

So b

n k

y y

  , ny  …,3,2,

Substituting into Eq. (1) above

   2

22

2

2 22

2 b

n

a

n

m

E x y nn yx

  

(b)Energy is quantized – similar to 1-D result. There can be more than one quantum state per given energy – different than 1-D result.

2. (a) Derivation of energy levels exactly the same as in the text

(b)  

2 1

2 2 2

22

2

n n ma

 E  



For n 2  ,2 n 1  1

Then

2

22

2

3

ma

E

  

(i) For

o a  4 A

 

  

27 102

342 2

.12 67 10 4 10

.13 054 10

 

 

  

 E

22 .6 155 10

   J

or

3 19

22 .3 85 10 6 10

.6 15510  

   

  E  eV

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 2

By D. A. Neamen Problem Solutions

(ii) For a  5 cm

 

  

27 22

34 2 2

.12 67 10 5 10

.13 054 10

 

 

  

 E

36 .3 939 10

   J or

17 19

36 .2 46 10 6 10

.3 93910  

   

  E  eV

2.

(a) For region II, x  0

 

    0

2 2 2 2

2

2    

 E V x

m

x

x O 

 General form of the solution is

#######  2   x  A 2 exp  jk 2 x  B 2 exp jk 2 x 

where

 E VO 

m k   22

2

Term with B 2 represents incident wave and

term with A 2 represents reflected wave.

Region I, x  0

 

  0

2 2 2 1

1

2   

 x

mE

x

x 

 General form of the solution is

#######  1   x  A 1 exp  jk 1 x  B 1 exp jk 1 x 

where

12

2

mE k 

Term involving B 1 represents the

transmitted wave and the term involving A 1

represents reflected wave: but if a particle is transmitted into region I, it will not be reflected so that A 1  0.

Then

#######  1   x  B 1 exp jk 1 x 

#######  2   x  A 2 exp  jk 2 x  B 2 exp jk 2 x 

(b) Boundary conditions:

####### (1)  1     x  0  2 x  0

(2) 0

2

1

  

  

x x x x

 

Applying the boundary conditions to the

solutions, we find

B 1  A 2  B 2

Ak 22  Bk 22  Bk 11

Combining these two equations, we find

2 2 1

2 1 2 B k k

k k A  

 

 

 

 

2 2 1

2 1

2 B k k

k B  

 

 

 

The reflection coefficient is 2

2 1

2 1 * 22

22 

 

 

 

   k k

k k

BB

AA R

The transmission coefficient is

 

2 1 2

421 1 k k

kk T R T 

   

2.

#######  2   x  A 2 exp  2 xk

 

 xk 

AA

x P 2 * 22

2

 exp 2

where

#######  

22

2

Vm E k o  

   

34

31 19

.1 054 10

.92 11 10 5 6.18 10 

 

   

9 k 2  .4 286  10 m  1

(a) For 10 5 5 10

   

o x A m

####### P exp 2 2 xk 

   

9 10 exp .42 2859 10 5 10     

 .0 0138

(b) For 10 15 15 10

   

o x A m

   

9 10 exp .42 2859 10 15 10  P    

6 .2 61 10   

(c) For 10 40 40 10

   

o x A m

   

9 10 exp .42 2859 10 40 10  P    

15 .1 29 10   

2.

 ak 

V

E

V

E T o o

161 exp 22  

 

 

  

 

 

 

 

where

#######  

22

2

Vm E k

o  

   

34

31 19

.1 054 10

.92 11 10 0 6.11 10 

 

   

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 2

By D. A. Neamen Problem Solutions

where

12

2

mE k 

Region II:

#######  2   x  A 2 exp  2 xk  B 2 exp  2 xk

where

 

22

2

Vm E k

O  

Region III:

#######  3   x  A 3 exp  jk 1 x  B 3 exp jk 1 x 

(b)

In Region III, the B 3 term represents a

reflected wave. However, once a particle is transmitted into Region III, there will

not be a reflected wave so that B 3  0.

(c) Boundary conditions: At x  0 :  1  2 

A 1  B 1  A 2  B 2

  dx

d

dx

d  1  2

jkA 11  jkB 11  Ak 22  Bk 22

At x  a :  2  3 

####### A 2 exp  2 ak  B 2 exp  2 ak

#######  A 3 exp  jk 1 a

  dx

d

dx

d  2  3

####### Ak 22 exp  2 ak  Bk 22 exp  2 ak

#######  jkA 31 exp  jk 1 a

The transmission coefficient is defined as

11

33

AA

AA T 

so from the boundary conditions, we want to solve for A 3 in terms of A 1. Solving

for A 1 in terms of A 3 , we find

 k k    ak  ak 

kk

jA A 2 2 2 1

2 2 21

3 1 exp exp 4

  

 

 2 jkk 21 exp  2 ak exp  2 ak 

####### exp  jk 1 a

We then find

 

 k k    ak

kk

AA AA 2

2 1

2 2 2 21

33 11 exp 4

 

 

2 exp 2 ak

    

2 2 2

2 2

2  41 kk exp ak exp ak

We have

#######  

22

2

Vm E k O  

If we assume that VO  E , then 2 ak will

be large so that

####### exp  2 ak exp  2 ak

We can then write

 

   

2 2

2 1

2 2 2 21

33 11 exp 4

k k ak kk

AA AA  

  

2 2

2 2

2  41 kk exp ak

which becomes

 

 k k    ak

kk

AA AA 2

2 1

2 2 2 21

33 11 exp 2 4

 

Substituting the expressions for k 1 and

k 2 , we find

2

2 2

2 1

2

mVO k  k 

and

 

 

  

  

  

   2 2

2 2

2 1

22

 

Vm E mE kk O

 V E   E

m  O  

  

 

2

2

2

    E

V

E V

m

O

O  

 

 

   

  

  1

2

2

2 

Then

 

 

 

 

 

 

 

   

  

  

   

E V

E V

m

ak

mV AA

AA

O

O

O

1

2 16

exp 2

2

2

2

2

2

2

33

11

 ak 

V

E

V

E

AA

O O

2

33

16 1 exp 2 

 

 

 

  

 

 

 

Finally,

 ak 

V

E

V

E

AA

AA T O O

2 11

33 16 1 exp 2 

 

 

 

  

 

 

 

  

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 2

By D. A. Neamen Problem Solutions

2.

Region I: V  0

 

   

 0

2 2 2 1

1

2 x

mE

x

x 

#######  1   x  A 1 exp  jk 1 x  B 1 exp jk 1 x 

incident reflected

where

12

2

mE k 

Region II: V  V 1

   

  

  

 0

2 2 2

1 2

2

2 x

mE V

x

x 

#######  2   x  A 2 exp  jk 2 x  B 2 exp jk 2 x 

transmitted reflected

where

#######  

2

1 2

2

mE V k

 

Region III: V  V 2

#######    

#######   

  

 0

2 2 3

2 2

3

2 x

mE V

x

x 

#######  3   x  A 3 exp  jk 3 x

transmitted

where

#######  

2

2 3

2

mE V k

 

There is no reflected wave in Region III.

The transmission coefficient is defined as:

11

33

1

3 * 11

33

1

3

AA

AA

k

k

AA

AA T     

From the boundary conditions, solve for A 3

in terms of A 1. The boundary conditions are:

At x  0 :  1  2 

A 1  B 1  A 2  B 2

 

  

x x

 1  2

Ak 11  Bk 11  Ak 22  Bk 22

At x  a :  2  3 

####### A 2 exp  jk 2 a  B 2 exp jk 2 a 

#######  A 3 exp  jk 3 a

 

  

x x

 2  3

####### Ak 22 exp  jk 2 a  Bk 22 exp jk 2 a 

#######  Ak 33 exp  jk 3 a

But 2 ak  2 n 

####### exp  jk 2 a exp jk 2 a  1

Then, eliminating B 1 , A 2 , B 2 from the

boundary condition equations, we find

#######    

2 1 3

31 2 1 3

2 1

1

3 4 4

k k

kk

k k

k

k

k T 

 

 

2. (a) Region I: Since VO  E , we can write

   

  0

2 2 2 1

1

2 

  

 x

Vm E

x

x O 

 Region II: V  0 , so

 

  0

2 2 2 2

2

2   

 x

mE

x

x 

Region III: V  3  0

The general solutions can be written, keeping in mind that  1 must remain

finite for x  0 , as

#######  1   x  B 1 exp  1 xk

#######  2   x  A 2 sin  2 xk  B 2 cos  2 xk

#######  3   x  0

where

#######  

12

2

Vm E k O   and 22

2

mE k 

(b) Boundary conditions

At x  0 :  1  2  B 1  B 2

1122

1 2 Bk Ak x x

  

  

 

At x  a :  2  3 

####### A 2 sin  2 ak  B 2 cos  2 ak  0

or

####### B 2  A 2 tan  2 ak

(c)

1 2

1 11 22 2 B k

k Bk Ak A 

 

 

 

   

and since B 1  B 2 , then

2 2

1 2 B k

k A 

 

 

 

 

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 2

By D. A. Neamen Problem Solutions

 

 

 

 

 

  

 

 

 

 

 

 

 

 

o o o ao

r

a

r

a

r r r a

2 exp exp

1 1

2/5 2

2 

  

   m ra

E

m

oo

o

2

2

2 

exp 0

1 1

2/

 

 

 

 

 

 

 

 

  

 

 

 

  o ao

r

 a

where

 

2

2

22

4

1 4 o 22 oo

o

ma

em E E

  

   

Then the above equation becomes



 

  

  

 

 

 

 

 

 

 

 

 

 

  o o o ao

r r a ar

r

a

2

2

2/

2

1 exp

1 1

0 2

2 2 2 2  

 

 

 

 

 

  ma m ra

m

oo oo

o  

or

 

 

 

 

 

 

 

 

 

 

  o ao

r

a

exp

1 1

2/

2 1 1 2 2 2  

 



 

 

  

  ora ao ao ora

which gives 0 = 0 and shows that  100 is

indeed a solution to the wave equation.

2.

All elements are from the Group I column of

the periodic table. All have one valence

electron in the outer shell.

Semiconductor Physics and Devices: Basic Principles, 4 edition Chapter 3

By D. A. Neamen Problem Solutions

Chapter 3

3.

If ao were to increase, the bandgap energy

would decrease and the material would begin

to behave less like a semiconductor and more

like a metal. If ao were to decrease, the

bandgap energy would increase and the

material would begin to behave more like an

insulator.

3.

Schrodinger’s wave equation is:

 

    xV tx

x

tx

m

,

,

2 2

2 2   

 

#######  

t

tx j 

 

, 

Assume the solution is of the form:

#######    

 

 

   

   

  

  

    t

E tx xu jkx 

, exp

####### Region I:   xV  0. Substituting the

assumed solution into the wave equation, we

obtain:

#######  

 

 

   

   

  

  

  

  t

E jkux jkx m x 

 exp 2

2

#######  



 

 

 

   

   

  

  

  

  t

E jkx x

xu

exp

#######  

 

 

   

   

  

  

   

  

  t

E xu jkx

jE j  

 exp

which becomes

#######    

 

 

 

 

 

 

  

  

  

  t

E jk xu jkx m 

 exp 2

2

2

#######  

 

 

 

 

 

 

  

  

  

  t

E jkx x

xu jk 

2 exp

#######  



 

 

 

 

 

 

 

  

  

  

  t

E jkx x

xu

exp 2

2

#######  

 

 

 

 

 

 

  

  

   t

E Eux j kx 

exp

This equation may be written as

 

   

  0

2 2 2 2

2 2   

  

   xu

mE

x

xu

x

xu xuk jk 

####### Setting     xu  u 1 x for region I, the equation

becomes:

   

2   1   0

1 2 2 2

1

2   k  u x  dx

du x jk dx

ud x 

where

2

2 2

mE   Q.E.

####### In Region II,   xV  VO. Assume the same

form of the solution:

#######    

 

 

   

   

  

  

    t

E tx xu jkx 

, exp

Substituting into Schrodinger’s wave equation, we find:

#######    

 

 

   

   

  

  

  

  t

E jk xu jkx m 

 exp 2

2

2

#######  

 

 

   

   

  

  

  

  t

E jkx x

xu jk 

2 exp

#######  



 

 

 

   

   

  

  

  

  t

E j kx x

xu

exp 2

2

#######  

 

 

   

   

  

  

   t

E VO xu jkx 

exp

#######  

 

 

   

   

  

  

   t

E Eux jkx 

exp

This equation can be written as:

 

   

2

2 2 2 x

xu

x

xu xuk jk 

  

  

#######     0

2 2 2 2   xu 

mE xu

mVO

 

####### Setting     xu  u 2 x for region II, this

equation becomes

   

dx

du x jk dx

ud x 2 2

2

2  2

  0

2 2 2

2 2   

  

    u x

mV k

O

where again

2

2 2

mE   Q.E.

Semiconductor Physics and Devices

PART I—Semiconductor Material Properties

Chapter 1. The Crystal Structure of Solids

Chapter 2. Introduction to Quantum Mechanics

Chapter 3. Introduction to the Quantum Theory of Solids

Chapter 4. The Semiconductor in Equilibrium

Chapter 5. Carrier Transport Phenomena

Chapter 6. Nonequilibrium Excess Carriers in Semiconductors

PART II—Fundamental Semiconductor Devices

Chapter 7. The pn Junction

Chapter 8. The pn Junction Diode

Chapter 9. Metal–Semiconductor and Semiconductor Heterojunctions

Chapter 10. Fundamentals of the Metal–Oxide– Semiconductor Field-Effect Transistor

Chapter 11. Metal–Oxide–Semiconductor Field-Effect Transistor: Additional Concepts

Chapter 12. The Bipolar Transistor

Chapter 13. The Junction Field-Effect Transistor

PART III—Specialized Semiconductor Devices

Chapter 14. Optical Devices

Chapter 15. Semiconductor Microwave and Power Devices

Appendix

A. Selected List of Symbols

B. System of Units, Conversion Factors, and General Constants

C. The Periodic Table

D. Unit of Energy—The Electron Volt

E. “Derivation” of Schrodinger’s Wave Equation

F. Effective Mass Concepts

G. The Error Function

H. Answers to Selected Problems

Index

Overview

With its strong pedagogy, superior readability and thorough examination of the physics of semiconductor material, Semiconductor Physics and Devices, Fourth Edition provides a basis for understanding the characteristics, operation and limitations of semiconductor devices. Neamen’ s Semiconductor Physics and Devices deals with the electrical properties and characteristics of semiconductor materials and devices.

The goal of this book is to bring together quantum mechanics, the quantum theory of solids, semiconductor material physics and semiconductor device physics in a clear and understandable way.

Key Features

• Extensive Coverage of Physics and Quantum Theory in chapters 2 and 3 thereby preparing students for a deeper

understanding in developing new semiconductor devices.

• Comprehensive Coverage of Semiconductor Devices is presented from Chapter 7 onward. Each chapter treats a

different device family. The organization of this book is flexible to accommodate different preferences and teaching

styles.

• Design Examples and homework problems help students grasp more practical and open-ended problem-solving

methods. The examples contain all the details of the analysis or design, so the reader does not have to fill in missing

steps. These design-oriented examples are marked with an icon.

• Enhanced Learning System with the inclusion of “Test Your Understanding Exercises” added after each example, and

learning objectives are included before each example as well. A preview section opens each chapter and links the

current chapter’s goals to those of earlier material.

Semiconductor Physics and Devices 4th edition (9780073529585)

Digital Rights

VitalSource

Copying: Allowed, 2 selections may be copied daily for 180 days

Printing: Allowed, 2 prints daily for 180 days

Expires: Yes, may be used for 180 days after activation

Reading Aloud: Allowed

Sharing: Not Allowed

Min. Software Version: Online: No additional software required

Offline: VitalSource Bookshelf

Suitable Devices: PCs, Tablet PCs, Macs, Laptops

Digital Rights Management (DRM) Key

Copying – Books that cannot be copied will show “Not Allowed.” Otherwise, this will detail the number of times it can be copied, or “Allowed with no limits.”

Printing – Books that cannot be printed will show “Not Allowed.” Otherwise, this will detail the number of times it can be printed, or “Allowed with no limits.”

Expires – Books that have no expiration (the date upon which you will no longer be able to access your eBook) will read “No Expiration.” Otherwise it will state the number of days from activation (the first time you actually read it).

Reading Aloud – Books enabled with the “text-to-speech” feature so that they can be read aloud will show “Allowed.”

Sharing – Books that cannot be shared with other computers will show “Not Allowed.”

Min. Software Version – This is the minimum software version needed to read this book.

Suitable Devices – Hardware known to be compatible with this book. Note: Reader software still needs to be installed.

9780073529585: Semiconductor Physics And Devices: Basic Principles

With its strong pedagogy, superior readability, and thorough examination of the physics of semiconductor material, Semiconductor Physics and Devices, 4/e provides a basis for understanding the characteristics, operation, and limitations of semiconductor devices.

Neamen’s Semiconductor Physics and Devices deals with the electrical properties and characteristics of semiconductor materials and devices. The goal of this book is to bring together quantum mechanics, the quantum theory of solids, semiconductor material physics, and semiconductor device physics in a clear and understandable way.

“synopsis” may belong to another edition of this title.

키워드에 대한 정보 semiconductor physics and devices 4th edition

다음은 Bing에서 semiconductor physics and devices 4th edition 주제에 대한 검색 결과입니다. 필요한 경우 더 읽을 수 있습니다.

See also  댕기 머리 샴푸 미국 | 내머리 망쳤어요!!! 염색 샴푸로 제대로 도움을 받으시려면 꼭 아셔야 합니다~~절대로 오래 @@ 하지 마세요~~~!!! 13601 좋은 평가 이 답변
See also  Pozew Do Sądu Pracy O Odszkodowanie Wzór | Pozew O Odszkodowanie I Zadośćuczynienie - Sprawa Sądowa. Odc. 16 최근 답변 250개

See also  Praca Krawcowa Szwaczka Norwegia | Praca W Norwegii Na Budowie, Warunki Pracy I Zarobki #Norwegia #Zyciewnorwegii 176 개의 베스트 답변

이 기사는 인터넷의 다양한 출처에서 편집되었습니다. 이 기사가 유용했기를 바랍니다. 이 기사가 유용하다고 생각되면 공유하십시오. 매우 감사합니다!

사람들이 주제에 대해 자주 검색하는 키워드 Introduction to Semiconductor Physics and Devices

  • electrical engineering
  • circuits
  • education
  • physics
  • electronics
  • electronics 1
  • semiconductor physics
  • semiconductor physics and devices
  • donald neamen semiconductor physics and devices
  • donald neamean book
  • semiconductor physics overview
  • semiconductor physics explained
  • electronics overview
  • electronics explained
  • semiconductor physics roadmap

Introduction #to #Semiconductor #Physics #and #Devices


YouTube에서 semiconductor physics and devices 4th edition 주제의 다른 동영상 보기

주제에 대한 기사를 시청해 주셔서 감사합니다 Introduction to Semiconductor Physics and Devices | semiconductor physics and devices 4th edition, 이 기사가 유용하다고 생각되면 공유하십시오, 매우 감사합니다.

Leave a Comment